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Abstract: The Vehicle Routing Problem (VRP) is one of the most challenging combinatorial optimization 

tasks. This problem consists in designing an optimal set of routes for a fleet of vehicles in order to serve a 

given set of customers. Vehicle routing problem forms an integral part of the supply chain management, 

which plays a significant role in productivity improvement in organizations through an efficient and 

effective delivery of goods/services to customers. This problem is known to be NP-hard; hence many 

heuristic procedures for its solution have been suggested. For such problems, it is often desirable to obtain 

approximate solutions, so they can be found fast enough and are sufficiently accurate for the purpose. In 

this paper, we have performed an experimental study that indicates a suitable use of genetic algorithms for 

the vehicle routing problem. We tested instances from Capacitated Vehicle Routing Problem Library 

(CVRPLIB) series A, B, E, M and X. The obtained experimental outputs were compared with the following 

heuristics: the Clarke and Wright heuristic, sweep algorithm, and Taillard's algorithm.  
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1. Introduction 

The Vehicle Routing Problem (VRP) is a generic name given to a whole class of problems in which a 
set of routes for a fleet of vehicles based at one or several depots must be determined for a number of 
geographically dispersed cities or customers, see Figure 1. The objective of the VRP is to deliver a set 
of customers with known demands on minimum-cost vehicle routes originating and terminating at a 
depot. The interest in VRP is motivated by its practical relevance as well as by its considerable 
difficulty. The VRP arises naturally as a central problem in the fields of transportation, distribution, and 
logistics. In some market sectors, transportation means a high percentage of the value added to goods. 
Therefore, the utilization of computerized methods for transportation often results in significant savings 
ranging from 5% to 20% of the total costs, as reported in [15]. Usually, in real world VRPs, many side 
constraints appear. Some of the most important restrictions are: 
 Every vehicle has a limited capacity (Capacitated VRP - CVRP) 
 Every customer has to be supplied within a certain time window (VRP with time windows - 

VRPTW) 
 The vendor uses many depots to supply the customers (Multiple Depot VRP - MDVRP) 
 Customers may return some goods to the depot (VRP with Pick-Up and Delivering - VRPPD) 
 Customers may be served by different vehicles (Split Delivery VRP - SDVRP) 
 Some values (like number of customers, theirs demands, serve time or travel time) are random 

(Stochastic VRP - SVRP) 
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 The deliveries may be done in some days (Periodic VRP - PVRP) 
 

 
Figure 1: The vehicle routing problem (adapted from http://neo.lcc.uma.es/dynamic/vrp.html) 

 
Figure 2: The algorithms for VRP and their relation, adapted from [11] 

 
The Vehicle Routing Problem (VRP) is NP-Hard, and therefore difficult to solve. The fact that VRP 

is both of theoretical and practical interest (due to its real world applications) explains the amount of 
attention given to the VRP by researchers in the past years. The vehicle routing problem has been very 
extensively studied in the optimization literature. It started with the seminal papers of [3]. The literature 
of VRP is classified into exact methods, heuristics approaches, meta-heuristics, and hybrid methods. 
Figure 2 summarizes the relation between the algorithms for VRP. We refer to [10] for exact, heuristic 
and metaheuristic algorithms, and to [1] for recent exact algorithms applied to the VRP. Exact 
algorithms can only tackle problems of a relatively small scale. Approximate algorithms are able to 
find very near-optimal solutions for large-scale problems within a very satisfactory computation time, 
and thus are commonly used in practice. A variety of approximate algorithms, including classical 
heuristics and metaheuristics since the 1980s, are proposed in the literature to efficiently solve different 
variants of VRP. Most of the models developed for the VRP in the literature considered deterministic 
parameters, such as deterministic travel times, demands, and service times. Compared with the classical 
heuristics, metaheuristics carry out a more thorough search of the solution space, allowing inferior and 
sometimes infeasible moves, in addition to re-combining solutions to create new ones. As a result, 
metaheuristics are capable of consistently producing high-quality solutions, in spite of greater 
computation time than early heuristics [4]. Metaheuristics can be categorized into two main types: 
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1. Local search. Local search based methods keep exploring the solution space by iteratively 
moving from the current solution to another promising solution in its neighborhood. The main 
local search based metaheuristics for VRP include tabu search (TS) [1], simulated annealing 
(SA) [2], Greedy Randomized Adaptive Search Procedure (GRASP) [9], Variable 
Neighborhood Search (VNS), and Large Neighborhood Search (LNS) [13].  

2. Population search. Population search based methods maintain a pool of good parent solutions, 
by continually selecting parent solutions to produce promising offspring so as to update the 
pool. Typical examples are Genetic Algorithms (GA) [19] and Ant Colony Optimization 
(ACO) [6]. 

 
Hybrid methods use a combination of exact, heuristic procedure or meta-heuristics to solve the VRP. 

Under hybrid methods, a limited number of researches which combine the meta-heuristics with exact 
methods are presented. Hybrid approaches to evolutionary computation (EC) combine their power with 
the use of specific heuristics [16] or [17]. The literature reveals that very few researches have applied 
hybrid methods to vehicle routing problem. Hence, future researchers may focus on developing 
efficient hybrid approaches by combining two or more of the exact methods, heuristics, and 
metaheuristics. 
 

2. Mathematical background of VRP 

The vehicle routing problem (VRP) is a difficult combinatorial problem, which conceptually lies at the 
intersection of these two well-studied problems: 
 The Traveling Salesman Problem (TSP) is the problem of a salesman who wants to find, starting 

from his hometown, the shortest possible trip through a given set of customer cities and to return to 
its hometown; visiting each city only once. TSP can be represented by a complete weighted graph G 
= (V, E) with V being the set of nodes, representing the cities, and E the set of edges fully 
connecting the nodes V. The arc set TA is a solution for the TSP if it is a simple cycle of length V 
in G. Each edge is assigned a value dij, which is the length of edge (i, j) A that is, the distance 
between cities i and j, with i, jN . The TSP is the problem of finding a minimal length 
Hamiltonian cycle of the graph. 

 The Bin Packing Problem (BPP) consists of packing a set of items into a number of bins so that the 
total weight, volume, etc. does not exceed a maximum value. Mathematically the problem's 
formulation can be as follows: Given a finite set of elements E = {e1,...,en} with associated weights 
W = {w1,...,wn} such that 0  wi w(bin). Partition E into N subsets such that the sum of weights in 
each partition is at most w(bin) and that N is the minimum. 

Hence, we can think of the first transformation as the underlying packing (BPP) structure and the 
second transformation as the underlying routing (TSP) structure. A feasible solution to the full problem 
is a TSP tour that also satisfies the packing constraints. Because of the interplay between the two 
underlying models (both of them are NP Hard problems), instances of the Vehicle Routing Problem 
(VRP) can be extremely difficult to solve in practice. 
 

The VRP is a combinatorial problem whose ground set is the edges of a graph G (V,E). The 
notation used for this problem is as follows:  
 V = {v0, v1, …,vn} is a vertex set, where we presume a depot to be located at v0. 
 Let V' = V \ {v0} be used as the set of n cities. 
 A = {(vi, vj) | vi, vjV; ij} is an arc set. 
 C is a matrix of non-negative costs or distances cij between customers vi and vj. 
 d is a vector of the customer demands. 
 Ri is the route for vehicle i 
 m is the number or vehicles (all identical). One route is assigned to each vehicle. 
 
When cij = cji for all (vi, vj) A the problem is said to be symmetric and it is then common to replace A 
with the edge set E = {(vi, vj) | vi, vjV; i<j}. 
 

Each vertex vi in V' is associated with a quantity qi of some goods to be delivered by a vehicle. The 
VRP thus consists of determining a set of m vehicle routes of minimal total cost, starting and ending at 
a depot so that every vertex in V' is visited exactly once by one vehicle. Making the computation easier, 
it can be defined (1): 

    CdVb
Vv i

i
/ 

          (1) 
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an obvious lower bound on the number of trucks needed to service the customers in set V. 
 

We will consider a service time i (time needed to unload all goods), required by a vehicle to unload 
the quantity at qi at vi. It is required that the total duration of any vehicle route (travel plus service 
times) may not surpass a given bound D, so, in this context, the cost cij is taken to be the travel time 
between the cities. The VRP defined above is NP-hard [17]. A feasible solution is composed of: 
 partition R1, …, Rm of V; 
 permutation I  of Ri 0 specifying the order of the customers on route i. 
 
The cost of a given route (Ri= {v0, v1, …,vm+1}), where viV and v0 = vm+1= 0 (0 denotes the depot), is 
given by (2):  

     
m

i i

m

i iii cRc
10 1,           (2) 

 
 A route Ri is feasible if the vehicle stops exactly once at each customer and the total duration of the 

route does not exceed the specified bound D: c (Ri) D. Finally, the cost of the problem solution S is 
(3): 

            


m

i iVRP RcSF
0

         (3) 

 
In this article, we have performed an experimental study that indicates the suitable use of 

unconventional approaches for the vehicle routing problem. 
 

3. Instances for experimental study 

During our experimental study, we focused on Capacitated VRP (CPRV), which was described as 
follows. CVRP is a Vehicle Routing Problem (VRP) in which a fixed fleet of delivery vehicles of 
uniform capacity must service known customer demands for a single commodity from a common depot 
at minimum transport costs. That is, CVRP is like VRP with the additional constraint that every vehicle 
must have a uniform capacity of a single commodity. A formal description for the CVRP is the 
following: 
 Objective: The objective is to minimize the vehicle fleet and the sum of the travel time, and the total 

demand of commodities for each route may not exceed the capacity of the vehicle which serves that 
route. 

 Feasibility: A solution is feasible if the total quantity assigned to each route does not exceed the 
capacity of the vehicle which services the route. 

 Formulation: Let Q denote the capacity of a vehicle. Mathematically, a solution for the CVRP is the 
same that VRP's one, but with the additional restriction that the total demand of all customers 

supplied on a route Ri does not exceed the vehicle capacity 


m

i i QdQ
1

: . 

 
We tested instances from Capacitated Vehicle Routing Problem Library (CVRPLIB) series A, B, E, 

M and X, available at [5]. The chosen instances cover different problem sizes (number of cities is 20, 
50, 100 and 200) and different distributions of cities (uniform, with a depot on one side and cluster 
placement), see Table 1. Optimal solutions of all used instances are shown in Table 2. 
 

Table 1: The test instances from Capacitated Vehicle Routing Problem Library 
 

Instance Number of 
Customers 

(n) 

Minimum 
Number of 

Vehicles (K)

Capacity (Q) Optimal 
solution 

A-n54-k7 53 7 100 1167 
B-n50-k7 49 7 100 741 
E-n101-k14 100 14 112 1067 
E-n22-k4 21 4 6000 345 
M-n101-k10 100 10 200 820 
M-n200-k16 199 16 200 1274 
P-n20-k2 19 2 160 216 
P-n50-k7 49 7 150 554 
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X-n106-k14 105 14 600 26362 
X-n200-k36 199 36 402 58578 
X-n209-k16 208 16 101 30656 

 
Table 2: Optimal solutions of all used instances 

 
A-n54-k7 B-n50-k7 E-n101-k14 

 
E-n22-k4 M-n101-k10 M-n200-k16 

P-n20-k2 P-n50-k7 X-n106-k14 

X-n200-k36 X-n209-k16 
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4. Selected heuristics for CVRP 

The Clarke and Wright heuristic  
The Clarke and Wright (CW) heuristic [3] is one of the best-known and has remained widely practiced 
to this day despite some of its shortcomings. It is based on the notion of saving. Initially, a feasible 
solution consists of n back and forth routes between the depot and a customer. At any given iteration, 
two routes (v0, ... vi, v0) and (v0, vj, .. ,v0) are merged into a single route (v0, ... , vi, vj, ...., v0) whenever 
this is feasible, thus generating a saving sij = ci0 + c0j - cij. In the parallel version of the algorithm 
(CWP), the merge yielding the largest saving is always implemented, whereas the sequential version 
(CWS) keeps expanding the same route until this is no longer feasible. In practice, the parallel version 
is much better. Flowcharts of both algorithms are shown in Figure 3. 
 

 
Figure 3: The Clarke and Wright heuristic. a) sequential version (CWS). b) parallel version (CWP). 

 
The sweep algorithm 
The sweep algorithm is generally attributed to [7]. It applies to planar instances of the VRP. Feasible 
routes are created by rotating a ray centered at the depot and gradually including customers in a vehicle 
route until the capacity or route length constraint is attained. A new route is then initiated and the 
process is repeated until the entire plane has been swept. An optimization step relating to the created 
route is then typically applied. This algorithm is also used in the Taillard algorithm. Flowchart of the 
sweep algorithm is shown in Figure 4a. 
 
The Taillard tabu search algorithm 
The Taillard tabu search algorithm [14] uses random tabu durations and continuous diversification. 
Periodic route reoptimizations are performed by means of an exact TSP algorithm. To help speed up 
computations, Taillard partitions the problem into several subproblems, each of which is solved 
independently on a parallel processor. In the case of planar problems, the decomposition process uses 
concentric rings carved into sectors centered at the depot. For non-planar problems, a different 
decomposition method based on computation of shortest spanning arborescence is used. The 
boundaries of the subproblems are redefined dynamically. Flowchart of the Taillard tabu search 
algorithm is shown in [12]. 
 
Genetic algorithms  
Genetic algorithms (GA) are a group of methods which may be used to solve search and optimization 
problems. The basics of GA were laid in [8]. For solving VRP with GAs, it is usual to represent each 
individual by just one chromosome, which is a chain of integers, each of them representing a customer 
or a vehicle. So that each vehicle identifier represents in the chromosome a separator between two 
different routes and a string of customer identifiers represents the sequence of deliveries that must 
cover a vehicle during its route. Each route begins and end at the depot (it will be assigned the number 
0). If we find in the solution two vehicle identifiers not separated by any customer identifier, we will 
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understand that the route is empty and, therefore, it will not be necessary to use all the vehicles 
available. A typical fitness function used for solving VRP with GA is (4) 
 

   xffxfeval  max          (4) 

where 
 

       xovertimextyovercapacixdistancetotalxf     (5) 

 
Both overcapacity and overtime functions return the amount of capacity and time over the 

maximum allowed value. If none of the function restriction is violated, f returns the total distance 
travelled. Otherwise, both capacity and time are weighted with values  and . The best solutions may 
have values close to fmax, while the solutions that break any restriction will see penalized their fitness 
value. Reproduction requires choosing suitable parents first. It can be done quasi-randomly by means 
of Roulette Wheel on the unit circle [18]. Individuals with the better cost value are more likely to be 
selected than individuals with the big cost value. Selected parents go to the “mating pool”. In the 
mating pool, two parents are randomly chosen to produce two offsprings. Their chromosomes are 
recombined by means of crossover and mutation. Crossover means cutting of chromosome in a 
randomly chosen position and changing parts between parents. After crossover, each offspring goes to 
the process of mutation. The crossover of P1 and P2 works as follows, two cutting sites i and j are 
randomly selected in P1. Then, the substring P1(i)⋯P1(j) is copied into C1(i)⋯C1(j). Finally, P2 is 
swept circularly from j+1 onward to complete C1 with the missing nodes. C1 is also filled circularly 
from j+1. The other child C2 may be obtained by exchanging the roles of P1 and P2.  

The use of crossover operator is shown in the following example: Let us have two chromosomes P1 
= (9,8,7,5,10,3,6,2,1,4) and P2 = (9,8,7,6,5,4,3,2,10,1). We choose the substring 5,10,3 that is copied 
into C1. Then C1 = (−,−,−,5,10,3,−,−,−,−). P2 is swept circularly from j+1 onward to complete C1 with 
the missing nodes and also the already used values are omitted. Then C1 = (−,−,−,5,10,3,2,1,9,8). Now, 
we continue from the beginning (from the first position). Then C1 = (7,6,4,5,10,3,2,1,9,8). C2 is 
obtained by exchanging the roles of P1 and P2. Therefore, C2 = (7,10,3,6,5,4,2,1,9,8). 

 

 
Figure 4: a) Sweep algorithm. b) Genetic algorithms (GA). 

 
The mutation implements an exchange of two randomly selected positions in the chromosome. A 

flowchart of the used genetic algorithm is shown in Figure 4b. 
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5. Experimental results 

As far as GA, we tested instance A-n54-k7 and P-n50-k7 concerning two parameters probability of 
mutation and population size of the four adjustable parameters. We also found a limit regarding the 
parameter population size; after its overcoming the solution does not change. It does not make sense to 
use a population of less than 10 or greater than 100. We wanted to test the parameter probability of 
mutation in its entire range (0-100%). The calculation was running for all combinations of both 
parameters population size and mutation probability, and we recorded the quality of all solutions. The 
size of population was incremented in steps of 10 (10, 20, ..., 100) and the probability of mutation was 
incremented in steps of 10% (0%, 10%, ..., 100%). The remaining parameters were assigned with the 
following values: maximum number of generations=1000000, and maximum number of generations 
without improvement =200000. It was found experimentally [12] that solutions practically do not 
improve after more than 1000000 generations. Another requirement was that the duration of a single 
run was not extremely long because the number of the tested combinations of the remaining parameters 
is large.  

Furthermore, we found out that if more than 200000 generations were running without 
improvement solutions, the algorithm is trapped in a local minimum, and there is only a small chance 
that it will be improved later. Thus, the algorithm usually reached the maximum number of generations 
without finding any other improvements. Therefore, we limited the maximum number of generations 
without improvements at 200000. We set  = 1 and  = 0 from eq. (6). The obtained experimental 
results are shown in Figure 5, where route length is represented by the ratio of the obtained length of 
the route towards the optimal solution. 
 

 
Figure 5: The obtained route length is expressed in % compared with the best-known result. a) 

Tested instance A-n54-k7. b) Tested instance P-n50-k7. 
 

The results of all experiments are shown in Figures 6-8, where the obtained route lengths are 
expressed in % in comparison with the best-known result. The testing was performed by running all of 
the above-mentioned algorithms on all tested instances. Each of them was run three times and the best 
result was recorded. Regarding Clarke and Wright heuristics and the sweep algorithm, there are not 
parameters that would need to be set. Concerning Taillard's algorithm, the maximum number of 
iterations without improvement was limited to 10000. As in previous experiments, we limited the 
maximum number of generations to 1000000, and the maximum number of generations without 
improvement to 200000 in the case of a genetic algorithm. Then we used the best measured parameters 
from the previous experiment, i.e. the size of the population that was 85 and the probability of mutation 
was 90% (the best results were 90 individuals in the population and the probability of mutation 90% for 
the first experiment, and 80 individuals in the population and the probability of mutation 90% for the 
second experiment). 
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Figure 6: Experimental results of tasks Depot on one side. The ratio of the obtained length of the 

route is expressed in % in comparison with the best-known result. 
 

 
Figure 7: Experimental results of tasks Uniform distribution of cities. The ratio of the obtained 

length of the route is expressed in % in comparison with the best-known result. 
 

 
Figure 8: Experimental results of tasks Cluster placement of cities. The ratio of the obtained length 

of the route is expressed in % in comparison with the best-known result. 
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6. Conclusion 

The Clarke and Wright heuristic scores very high on simplicity and speed. It contains no parameters 
and it is easy to code. The parallel version of Clarke and Wright heuristics surpassed the sweep 
algorithm in all instances except for tasks with a uniform distribution of cities. Its strength lies in 
solving tasks with cluster placement of cities, where CW surpassed even Taillard's algorithm in two 
tasks. Another CWs advantage is its extreme speed, when the calculation of a task with 200 cities ran 
within one second. The sweep algorithm scores high on simplicity, but does not seem to be superior to 
CW both in terms of accuracy and speed. It is also rather inflexible. Again, the greedy nature of the 
sweep mechanism makes it difficult to accommodate extra constraints and the fact that the algorithm 
assumes a planar structure severely limits its applicability. In particular, the algorithm is not well suited 
to instances defined in an urban setting with a grid street layout. The sweep algorithm excelled in tasks 
with a uniform distribution of cities, where it surpassed algorithm CWP, although it is not so fast. The 
sweep algorithm does not provide good results compared with Taillard's algorithm. 

Taillard's algorithm is one of the best available in terms of accuracy. It has identified nine of eleven 
best results on the used CVRP instances. Moreover, it found an optimal solution in two instances. The 
algorithm uses standard insertions, but managing the dynamic decomposition process as well as the 
parallel implementation adds to its complexity. One would expect this algorithm to handle additional 
side constraints reasonably well because of the combination of insertion and exchange moves used to 
define neighbouring solutions. A disadvantage is its time demands. 

The proposed implementation of a genetic algorithm uses the crossover of chromosomes and their 
following allocation of into routes using Prins' algorithm. Details of the used crossover operator are 
described in Chapter 4. The obtained outputs from our experimental study using genetic algorithms 
were compared with all of the above-mentioned approaches. The results indicate that genetic 
algorithms can be used to VRP. A genetic algorithm is able to find a solution with a deviation up to 
20%, A genetic algorithm is able to find a solution with a deviation up to 20%, which was verified 
experimentally. The probability of mutation was set in the range of 3-10%. From the fact that the 
implemented algorithm achieves excellent results with such an extreme probability of mutation, we can 
conclude that the used method of crossing was not satisfactory, because all the progress toward better 
solutions was implemented through mutation. We can see in Figure 5 that the algorithm achieves up to 
twice the path length (compared to the best-known solution) in the case of no mutation. This is true 
because the mutation is an important part of genetic algorithms and it enables us to get out of local 
minima. We can also observe significantly poorer outcomes for the smallest population size of 10. We 
achieved the best solution for the population size of 70-100 individuals and the probability of mutation 
80-100%. 
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