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Abstract: Fractional calculus and its generalizations are used for the solutions of some classes of differential
equations and fractional differential equations. In this paper, our aim is to solve the radial Schrodinger
equation given by the Makarov potential by the help of fractional calculus theorems. The related equation
was solved by applying a fractional calculus theorem that gives fractional solutions of the second order
differential equations with singular points. In the last section, we also introduced hypergeometric form of
this solution.
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1. Introduction

The fractional calculus theory enables a set of methods to generalize the derivative notions from
integer k to arbitrary order p, {x¥,d%/9x*} - {xP,0P/8xP} in a good light. Fractional differential
equations are applied in a widespread manner in robot technology, Proportional-Integral-Derivative
control systems, Schrodinger equation, heat transfer, relativity theory, economy, filtration, controller
design, mechanics, optics, modelling and so on.

Riemann-Liouville fractional integration and fractional differentiation are, respectively,
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where k € N, N is the set of positive integers and, I is Euler’s gamma function [1-5].

Explicit solutions of some differential equations with singular coefficients were obtained by using
the fractional calculus theorems. An important example of Fuchsian differential equations is provided by
the celebrated hypergeometric equation
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whose study can be traced back to L. Euler, C.F. Gauss and E.E. Kummer. Other classes of non-Fuchsian
differential equations which we shall consider in this investigation include the so-called Fukuhara
equation [6]
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the Tricomi equation [7]
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and the Bessel equation [8]
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Furthermore, Laskin [9] introduced some properties of the fractional Schrodinger equation and
proved the Hermiticity of the fractional Hamilton operator and established the parity conservation law
for fractional quantum mechanics and also studied on the relationships between the fractional and
standard Schrodinger equations. Yasuk [10] obtained the general solutions of Schrodinger equation for
non central potential by using Nikiforov-Uvarov method. The numerical methods used for the solution
of the Schrodinger equation was presented [11]. An exponentially-fitted method was introduced for the
numerical solution of the Schrédinger equation and, trigonometric fitting was also explained and applicated
[12]. Jumarie [13] studied from Lagrangian mechanics fractal in space to space fractal Schrodinger’s
equation via fractional Taylor’s series. Higher-order difference schemes were considered [14] for the
numerical solution of Schrodinger’s radial equation. A spherically harmonic oscillatory ring-shaped
potential was proposed [15] and its exactly complete solutions were presented by the Nikiforov-Uvarov
method. Aygun et al. [16] presented the exact and iterative solutions of the radial Schrodinger equation
for a class of potentials, V(r) = A/r?> — B/r + Cr*, for various values of k from —2 to 2, for
any n and [ quantum states by applying the asymptotic iteration method. Fractional solutions of the radial
equation of the fractional Schrodinger equation were obtained by using N-fractional calculus operator
and, hypergeometric forms of these solutions were also presented [17]. Radial Schrodinger equation for
some physical potentials such as pseudoharmonic and Mie-type potentials was solved by means of the
nabla discrete fractional calculus operator [18]. And, we also mentioned the fractional solutions of the
radial Schrodinger equation given by the Makarov potential by applying the fractional calculus theorems.

2. Preliminaries
Definition 2.1. If the function f(z) is analytic (regular) and has no branch point inside and on C, where

C ={C~,C*}, C™ is an integral curve along to cut joining the points z and —co + ilm(z) and, C* is an
integral curve along to cut joining the points z and +oo + ilm(z)
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where t # z,
—n<arg(t—z)<m for C7, 3)

0<arg(t—=z)<2m for C*.

Then, f,(z) (p > 0) is the fractional derivative of f(z) of order p and, f,(z) (p <0) is the
fractional integral of f(z) of order —p, provided that

If,(2)| <o (peR), 4)

[19,20].
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Lemma 2.1 (Linearity). Let f(z) and g(z) be single-valued and analytic functions in some domain 2 <
C.If f, and g,, exist, then

(Kf + Lg)p =Kf, +Lg, (%)
hold where K and L are constants and, p € R,z € 2 [5].

Lemma 2.2 (Index law). Let f(z) be single-valued and analytic function in some domain 2 € C. If
(fo), and (fp)(T exist, then

o = foro = (1), (6)
where g,p € R,z € 2 and, |% [5].

Lemma 2.3 (Generalized Leibniz rule). Let f(z) and g(z) be single-valued and analytic functions in
some domain 2 < C. If f, and g, exist, then

N I'(p+1)
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where p € R,z € 2 and, | Lp+1) | < o [5].
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Property 2.1. Forany ¥ # 0, p € R and z € C, we have

9z) — 9p,9z

(e )p vPevZ, (8)
-9z — p-impgp ,—9z

(e )p e tPYPevZ, )

. T(p—19)
Y — p-imp 9-p 10
(), = e 5y 2" (10)

where ¥ is a constant and, |Fr(é:;,;)| < oo [5].

Theorem 2.1. Let P(z; p) and Q(z; ¢) be polynomials in z of degrees p and g, respectively, defined

by
» »
P(z; p) = Z az?* =a,| |(z- z) (ap#0,p€N), (11)
k=0 j=1
and,
a4
0@ a) = ) bzt™ (b # 0,4 €N). (12)

k=0

Suppose also that f_,, # 0 exists for a given function f.
Then the nonhomogeneous linear ordinary fractional differintegral equation
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has a particular solution of the form
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0(z) = [(7]:—(1;_;(2)6}[(2%@))_1 e—}f(z;p,fl)]v_pﬂ (z eC\ {Zl, ,Zﬂ,}), (14)
where, for convenience,
(oG
H(z; p,g) = PCp) ag (zeC\{z,...2,}), (15)

provided that the second component of (14) exists. Moreover, the homogeneous linear ordinary fractional
differintegral equation
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has solutions of the form

¢(z) =K(e"Cr®) (17)

where H (z; p, q) is given by (15) and, K is an arbitrary constant [21].
3. The Radial Schrodinger Equation given by the Makarov Potential
The radial Schrodinger equation given by the Makarov potential is an analytically solvable problem

in physics and can be used to describe ring-shaped molecules such as benzene and interactions between
deformed pairs of nuclei. In spherical coordinates (7, 8, ¢), the Makarov potential is given by

a B y cos 6
Vo) = T * r2sin?6  r2sin%6 (@>0), (18)
where the first term of Equ. (18) is the Coulomb potential, the second and the third are the short range
ring-shape terms. Different methods were applied to obtain exact solutions of Schrodinger equation for
the Makarov potential such as supersymmetric approach, path integral representation, Nikiforov-Uvarov
method, and Asymptotic Iteration Method. For relativistic cases, Yasuk et al. [22] and Zhang et al. [23,24]
derived exact solutions of bound states of the Klein—Gordon equation and the Dirac equation with equal
scalar and vector Makarov potentials, respectively.

In this paper, we obtain solutions of the radial Schrodinger equation. Therefore, we take advantage
of the fractional calculus theorems. Thus, we find fractional forms of the solutions of the radial
Schrodinger equation. And, we also obtain hypergeometric forms of the solutions.

The Schrodinger equation for the Makarov potential is defined as

2

h
—ﬁvz +V(r,0)— &Y, 0,9) =0. (19)

where m is the mass of the electron, # is the Planck constant, V is the Laplacian operator, r is the distance
from a fixed center, 0 is the polar angle, ¢ is the azimuthal one, V is the potential energy, £ is the total
energy, and ¥ is the wave function.

In analogy to the practice for usual spherical potential, we can write

R
Y(r,0,9) = #Y(B)Mqo), (20)

and then separate variables of the Schrodinger equation
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where €2 is separation constant which is real and dimensionless [25].

For continuous states £ > 0, we take k = \/2mE/h2 > 0,0 = ma/h? and t = £(£ + 1) in Equ.
(21). Thus, we can write Equ. (21) as

2 d?R(r)

Tzt [k?1% + 207 — 7]R(r) = 0. (24)

4. Main Results

In order to apply Theorem 2.1 to a class of ordinary homogeneous differential equations as:

d? d

Az? d—Z‘f +(Bz+0C) d—‘g + (D22 +Ez+ F)p(z) =0 (2 € C\{0}), (25)
which obviously corresponds to (24) when the coefficients A # 0,B,C,D # 0,E and F are privately
stated as follows:

Theorem 4.1. If |fp(z)| <oo(p €R)and f_, # 0, then

d? d
Az? te + Bz—q)

17 o+ (Dz> +Ez+ F)p(z) =f(z) (A#0,D#0), (26)

has a particular solution such as:

(2) = z2e” [(A‘ 7P+ (@A) /4202 (,=A-10=92 £ () )
Y ( f@),)., @7)
x P~ CGAMEN R 202] | (A% 0;D # 0,z € C\(0}),

where A and 9 are in the form

A—B ++/(A—B)?—44AF /D
— 4 28
A= > , U=4=i | (28)

and,
(2AA+ B)Y + E
_ 29
P 249 9)
Moreover,
d*¢ do
22 7 - 2 = 30
Az 02 + Bz e + (Dz*+Ez+ F)p(z) =0, (30)

has solutions of the form
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(p(z) — Kz/leﬂz(ZP_(ZAA-FB)/Ae—ZﬁZ)p_l (A,D * O,Z 1= (C\{O}), (31)

where 4 and ¥ are given by (28) and, p is given by (29) and, K is an arbitrary constant [21].

Theorem 4.2. Under the hypotheses of Theorem 4.1, a homogeneous linear ordinary differential equation
(radial Schrodinger equation in Equ. (24)) such as:
, A*R(r)
dr?

+ [k?r? 4+ 207 — T]R(r) =0,

has a particular solution in the form

R(r) = Kr(li\/1+4‘r)/2619r[rp—(li\/1+4r)e—219r] , (32)
p—1

where 4 and 9 are given by

_1£V1+4r .
-2 U=

and,

1+ 19+ 20
- 29 ’

it being confirmed that the second component of (32) exists and, K is an arbitrary constant. We can write
(32) as follows

R(r) = Kr*e’" [r"_“e‘wr]p_l, (33)

where analytical solutions of the wave function R(r) can be obtained by means of the fractional calculus
definitions and, the hypergeometric solution of R(r) is obtained by the following theorem which is
proved with Lemma 2.3 and Property 2.1.

Theorem 4.3. The Equ. (33) can be written equivalently as
R(r) = rP~te=0r F[l—pZ/l p;— L (r¢0|—i|<1) (34)
20 ' ' 20r | 20r '

where |(r"‘u)n| < oo (n € Z*U{0}) and, ,F, is the Gauss hypergeometric function.
Proof. By means of (7), we have

T F(p) -2 =29r
R(r) = Kr%e? Z IF'(p—n)I'(n+ 1)( r A)n(e ’ )(p—l—n)' (35)

By using (9) and (10), we rewrite the Equ. (35) as follows

) ool"(n+1—p)l"(n+2)L—p)1 14\"
— p—A,=Or —im\p—1 Y
R(r) = Kro™e™™ (29e™) Z ra-p (22— p) n!( 219r) (36)
Then, we obtain
R(r) = KrP~* -ﬂriu— ) (21— p) l(——l )n 37
r) =KrP e , Pln P\~ 597) (37)
n=
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where 1/K = (29e~i™)P~1,
Finally, we have

1
R(r) =rP~*e " ,F, |1 —p, 21— p; —m] (38)

5. Conclusion
In this paper, we used fractional calculus theorems for the radial Schrodinger equation given by the

Makarov potential. And, we obtained the hypergeometric form of the solution. The most important
advantage of this method is that it can be applied for singular equations.
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