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Abstract:

Continuous extensions are now routinely provided by many IVP solvers, for graphical
output, error control, or event location. Recent developments suggest that a uniform,
stable and convenient interpolant may be provided directly by value and derivative data
(Hermite data), because a new companion matrix for such data allows stable, robust and
convenient root-finding by means of (usually built-in) generalized eigenvalue solvers such as
eigin MATLAB or Eigenvalues in MAPLE. Even though these solvers are not as efficient as
a special-purpose Hermite interpolant root-finder might be, being O(d3) in cost instead of
O(d2)7 for low or moderate degrees d they are efficient enough. More, because all roots are
found, the first root (and hence the event) is guaranteed to be found. Further, the excellent
conditioning properties (compared to the monomial basis or to divided differences) suggest
that the results will be as accurate as possible. The techniques of this paper apply to
polynomial or rational interpolants such as the shape-preserving interpolants of Brankin
and Gladwell.

We give a sketch of barycentric Hermite interpolation and a sketch of the theory of con-
ditioning of such interpolants. Moreover, we present the construction of the Hermite
interpolation polynomial companion matrix pencil and a discussion of scaling and precom-
putation. We remark that the Bézout matrix can be used used to solve more complicated
event location problems involving more than one polynomial, via polynomial eigenvalue
problems.
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2 Corless et al.

1 Introduction

We illustrate how some recent improvements in the understanding and techniques of interpolation
can be specialized to event location in the numerical solution of initial-value problems (IVPs) for
Ordinary Differential Equations (ODEs). Specifically, we show how a new companion matrix pencil
can be used to explore different choices of interpolant for event handling in a robust, numerically
stable, and convenient way. The technique allows the use of polynomial or rational interpolants in
an equally convenient manner. Since we use a generalized eigenvalue solver to find the zeros of the
interpolants, we do not claim efficiency, but we have found that our approach seems to be efficient
enough to be interesting. Moreover, since all roots are found automatically, there is no difficulty
identifying the first root, which defines the event. We sketch some alternative root-finding methods
in Section 7, but do not pursue them here.

As is usual in event-handling for IVPs for ODEs, we use the data produced by the solver
(which is often Hermite data, i.e., values and some derivatives) to construct an interpolant. The
interpolant approximates a function whose zeros define the event. The location of these zeros can
be found numerically to isolate the event. Often, more than one event function is considered in
the same timestep; in this case, the interpolants are most naturally solved one at a time and the
first event deduced from the results. Event location is not as easy as it may appear at first glance:
see [25] for a discussion of practical difficulties.

All of these difficulties also pertain to the interpolants of this paper. Our contribution is to
show how to use the Hermite basis (which includes the Lagrange basis) consistently; this gives
some numerical stability advantages over other representations of the interpolating polynomial or
rational function. In particular, we use the barycentric forms. This uniform approach also confers
flexibility: it is simple, with our approach, to change interpolants.

Polynomial interpolants have some advantages, but rational interpolants can sometimes give
added flexibility for, say, shape preservation [7]. Other parameters, including so-called “tension
parameters,” can be used for various purposes. These can all be accommodated by the methods
of this paper.

2 Barycentric Hermite Interpolation

We assume that the function f to be interpolated is specified by Hermite interpolation data: that
is, given n distinct nodes 7; (1 < i < n) and given values and derivative values p; i of f(t) at those
nodes, we have

k= —"7"=——[f(t 1<i<n0<k<s;—1). 1

e 2E(0)| DU , 1) (1)

In (1), the non-negative integers s; are the confluencies of the nodes that enumerate the number

of derivatives known at each node (1 < ¢ < n). The factorials are included in the definition of p;

both for scaling and for convenience. The classical theory of Hermite interpolation assures us that
there is a unique polynomial of degree at most d, where

d:71+i$i, (2)
i=1

that fits the data p; i, since the 7; are distinct: 7; = 7; <= i = j. At least one s; must be positive
for d to be non-negative.

Explicit constructions of this unique Hermite interpolating polynomial p(t) are given in text-
books usually only if all s; = 1 (which corresponds to Lagrange interpolation). However, there are
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Hermite Interpolants for Event Location 3

many algorithms for constructing p(¢) given 7; and the p; j in the literature (e.g., [19, 16]). In the
present work, we use a simple approach from [28] called barycentric Hermite interpolation which
also allows rational interpolation. Rational interpolation is somewhat more complicated than poly-
nomial interpolation in that there may be unwanted poles and that some data may be “unattain-
able”. The techniques we present require a fixed denominator known a priori. This restriction is
sufficient for our purposes. Unattainable points are easily detectable with the barycentric approach
and can be avoided by choosing a different denominator [28].

Barycentric Lagrange interpolation (a special case of barycentric Hermite interpolation) has
been shown to be numerically stable and more efficient than had been previously acknowledged [5,
17]. Barycentric Hermite interpolation seems to share these benefits provided no s; is too large [28,
24] (although this has not yet been proved). Perhaps the most surprising feature in the derivation
of barycentric Hermite interpolants is that it amounts to no more than a partial fraction expansion.
For greater details supporting the theoretical results used in this paper, consult [24].

2.1 Details and notation

We construct the polynomial

w(t) =[]t —m)" (3)

i=1

which is of degree d + 1 with a zero of order s; at each node 7; (1 < ¢ < n). In the rational
interpolation problem we wish to solve, ¢(t) will be the known denominator and f(t) = p(t)/q(t)
will be the function to reconstruct from the values (1). Then, for the prescribed polynomial ¢(t),
we compute the partial fraction expansion of the rational function ¢(t)/w(t):

S L (4)

The partial fraction expansion (4) uniquely defines the complex constants «; ; that we call the
generalized barycentric weights. These weights can be precomputed once given the denominator
q(t), the nodes 7; and the corresponding confluencies s; (1 < ¢ < n). For the important case
of polynomial interpolation, ¢(t) = 1, in which case the theory of residues leads to an analytical

formula for the leading terms
n

Yiysi—1 = H(Ti — 7). (5)

j=1

In the case where the denominator ¢(t) = (t — 21)(t — 22) - - - (t — 24) is given by its poles, again an
explicit formula is known in the Lagrange case [4], and can be extended to the leading terms in

the Hermite case:
n

q
Yisior = [ [ =) [1 (7 = 2) - (6)
1 =

In [24] we discuss a stable, series-based algorithm, implemented in MAPLE, for computing
the 7, ; of equation (4). A MATLAB implementation accompanies this present paper. A faster
algorithm based on confluent divided differences is provided in [28]. We believe the algorithm
of [28] for computing the generalized barycentric weights ~; ; is less stable than our MATLAB
algorithm. For the relatively low degrees we consider at present, neither the speed nor the (minor)

instability are significant.
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4 Corless et al.

Using all these computed ~; j, we may write the unique rational function f(t) = p(t)/q(t) with
numerator p(t) of degree at most d that interpolates the data p; ; in (1) as

s

F0 =" w0 Y me , (7a)

q i=1 j=0

—~

or, as the second barycentric form

n s;—1 J
Yi,j ‘
Z Z (t —7,)7+1 > pinlt
p(t) i=1 j=0 k=0
@ il i
m

To deal with removable singularities at the interpolation nodes 7;, in MATLAB, we use the “exact”
trick of [5] to evaluate the rational function (7) (Note that there is a typo in the code fragment
in [5, p. 510]: the line exact(xdiff==0) = 1 should be exact(xdiff==0) = j to record just
which evaluation points are equal to interpolation point(s)). This amounts to replacing the rational
function by the exact data value when, and only when, the floating-point evaluation point is bit
for bit identical to a node; it is surprising that the second barycentric form is stable enough (if all
s; are 1) that this works. This also appears to work in the Hermite case, though our experiments
show some (minor) degradation with increasing confluency. This will be investigated further and
reported on in a future paper.

The barycentric forms (7), specialized to the Lagrange case s; = 1 (1 < 7 < n), go back to
1945 (at least) and have been recommended in [22], [15, vol. 2], [29], and [28]. More recently,
[5] and [17] have shown barycentric Lagrange interpolation to be numerically stable: specifically,
Higham shows that the first barycentric form (7a) is backward stable, and that although the second
form (7b) is not backward stable, it is forward stable for nodes with a small Lebesgue constant
(again, if all s; = 1).

In the more general case of barycentric Hermite interpolation, the second barycentric form (7b)
is backward stable in that the right-hand side is a rational function that interpolates p; , at 7;
for any nonzero values of v, ; [29, 28]. This observation explains the often remarkable success of
the second form (7b). Regardless, in [24], we argue for accurate computation of the v; ; anyway,
and show that the residue method does a good job, and is reasonably efficient. This is in contrast
with the symbolic algorithms used in the MAPLE function calls convert (¢(t)/w(t), parfrac) and
convert (¢(t)/w(t), fullparfrac). These MAPLE routines internally convert the rational expres-
sions to the monomial basis centred at the origin, and cannot recover from the resulting numerical
instability. The algorithm of [28] also makes an implicit change of basis to the Newton basis and,
with a proper ordering of the nodes, is less susceptible to rounding errors than MAPLE’s partial
fraction routines. However, the method of [28] can be quite unstable under certain orderings of the
nodes [29]. In the present work, the examples are sufficiently small that the method by which the
weights ~; ; are computed is immaterial. For larger problems, we recommend the method of [24].

Having computed the generalized barycentric weights in (4) by some means, we may explicitly
write down the Hermite polynomial basis® associated with the interpolation problem at hand.

3not to be confused with orthogonal Hermite polynomials from mathematical physics
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Hermite Interpolants for Event Location 5

Define
J .
Z Y1+ (t = 71) R
1 J! =0
Hy(t): j@I,J(t) = s (8)
! Z i)_j—l
We have , ,
H}&(Tk) = 5],k5j7g and @§7)J(Tk) = J!517k5J,[ (9)

for 1< Ik<nmnand 0 < J < s;—1,0 < ¢ < s — 1. The formula (8) parallels the explicit
barycentric form of the Lagrange basis polynomials.

2.2 Differentiation of Hermite Interpolants

The work of [28] gives a formula for computing derivatives of the rational Hermite interpolant
based on confluent divided differences. As an alternative, we have generalized the result presented
in [5] for the Lagrange case to the general rational Hermite case; we conjecture that the formulas
below are better suited to our root-finding applications because they allow precomputation and
also may be more numerically stable.

We wish to compute derivatives. In particular, knowledge of H(SL)( r) 1< I,J,L,k <n,)
allows us to differentiate any rational function given by Hermite data. This follows because we can
compute p(**)(73,) at each node by the expression

n Si—

p(sk (73) ZZ (J) H( ’“)(Tk) (10)
i=1 j=0

and then we know p/(74),p" (1x), - .., p'*¥) (1) for 1 < k < n; hence

n Sif

ZZ U (1) Hy 5(t) - (11)

7=0

That is, by finding Hl(sj)(Tk) (1< 1,J,L,k < n,), we have constructed the nontrivial entries of
the differentiation matrix for the Hermite nodes. This process can be iterated to get p”(t) at the
nodes (this amounts to squaring the differentiation matrix). Once the values of the derivatives at
the nodes are computed, we may use the same barycentric form (7b) to evaluate p’(¢) for any ¢ in
the interval.

Theorem 2.1
( ) S ' Sr— J—1
H;*: _— — )it 12
1.y (L) = Tmei JZO Vr,j+(TL = 71)” (12)

forall I £ L, and all0 < J < sy —1. Also,

n min(p,s;—1)

H(SL Z Z ﬁ(ﬁ‘ - TL)H_jHi(Z‘L)(TL), (13)

forall0 < p < sp—1.

Proof See [24].
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6 Corless et al.

Table 1: MATLAB code for an extreme example

function ext=derzeros3(n)

tau = cos( (0:n)*pi/n ); % nodes

t = linspace( -1, 1, 20*n+1 );

rho = [ones(1,n+1); zeros(l,n+1); zeros(l,n+1)]; % data
T = rho(:);

r(4) = 1.5; % bump in curve

[w,D] = genbarywts( tau, 3 ); % get barycentric weights

% Now differentiate at nodes and set up companion pencil for p’
[CO0,C1] = gemp( Dxr/norm(D*r,inf), tau, 3, w/norm(w,inf) );

ext = eig( CO, C1 ); % locate extrema
yext = hermiteval( r, ext, tau, 3, w, D ); 7% extremal heights
[y,yp]l] = hermiteval( r, t, tau, 3, w, D ); % evaluate interpolant

plot( tau,r(1:3:3*n+1),’bo’, t,y, ext,yext,’r+’ );
axis( [-1,1,0,2] );

2.3 An extreme example

Consider a set of n distinct nodes 7; (1 < ¢ < n) and the polynomial p(t) such that

e p(rp)=1for1<k<n—2andk=n

e p/(ry)=p'(r;)=0for1<i<n

o p(Th-1) = 1.5.
That is, p(t) is a perturbation from the constant polynomial p(t) = 1 (although its derivatives
are unchanged at 7 = 7,_1). Polynomials do not ‘like’ this data well, for high degrees: the
single perturbation (correctly) induces large oscillations. However, this wiggly polynomial can be

evaluated accurately, and the zeros of its derivative found easily, by the methods of this paper. To
be specific, in MATLAB, the call derzeros3(34) (see Table 1) produces the graph in Figure 1.

3 Conditioning

The condition number for evaluating p(t) at t = A (or the polynomial evaluation condition number)
is a measure of the sensitivity of p(A) to changes in the values of the coefficients of p(t); this
quantity must obviously depend on the basis used to represent p(t). Similarly, the condition number
for finding a simple root A (the root-finding condition number) turns out to be the polynomial
evaluation condition number of p(t) at t = X apart from a factor 1/|p’(\)| which is independent
of the basis. The theory of how condition numbers in one basis are related to those in another is
elegantly explained in [12] and slightly extended in [9].
Suppose p(t) is expressed in the basis ¢ (t), 0 < k < d, as

d
p(t) = Z crPr(t) (14)
k=0

and that a perturbed polynomial

d
(p+ Ap)(t) = D (cx + Acy)di(t) (15)
k=0

© 2008 European Society of Computational Methods in Sciences and Engineering (ESCMSE)
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Figure 1: A deliberately wiggly high-degree polynomial specified by Hermite data. The methods
of the paper accurately evaluate and differentiate the polynomial, and locate its extrema.

has coefficients slightly different, with
|Ack| < age (16)
k

for some as yet unspecified weights oy > 0, 0 < k < d, not all zero, and some presumably small

€ > 0. Then Holder’s inequality gives

d
|Ap(t)] < (Z akl(bk(t)I) €. (17)
k=0

This gives an absolute condition number for evaluation of p(t). Put

d
B(t) = aklér(t)]. (18)
k=0

Now, assuming & small, suppose that X is a root of p(t) and A + A\ is the corresponding root of
(p+ Ap)(t). Then, to first-order, we have
—Ap(A) 2 B(Me
A= ——~ 1+ 0O(A%), and hence [AN T )
7oy TOR) AR o)
This can be extended to the following result on pseudozeros (itself a special case of the result for
pseudospectra of [1, 8]): define the pseudozero set as

(19)

Ac(p) ={z: (p+ Ap)(2) =03 |Ack| < axe}. (20)
Then this may also be characterized as

Ad(p) = {z: p7'(2)| = (B(2)e) 7'}, (21)

where now no assumption is made about the size of €. This result includes multiple roots. It
should be clear that small B(z) is desirable (essentially shrinking e, or at least not growing it).

© 2008 European Society of Computational Methods in Sciences and Engineering (ESCMSE)



8 Corless et al.

If all oy are taken to be 1, then the Acy are absolute perturbations, and B(\) becomes the
familiar Lebesgue function from interpolation theory (see, e.g., [21]). This is pursued briefly in [8]
but is not needed here. More often, we take ap = |cg| so that the Ac¢y are small relative pertur-
bations in the coefficients. If this is done, then the theory of [12] shows that the Bernstein basis
is optimal among all bases non-negative on [0, 1] (and by translation, on any real interval). The
extension of [9] shows that Lagrange bases are optimal over all bases non-negative on the nodes,
and are then optimal on a set with non-empty interior containing the nodes. This set can be
surprisingly large in C and need not be a real interval. This result explains why the Lagrange basis
can be orders of magnitude better conditioned than even the Bernstein basis.

This result has not been extended to the case sx > 1, the Hermite case. Nonetheless, experience
shows that Hermite bases can be very well-conditioned. Properly interpreted, this result supports
the observation of [3] that showed the superior conditioning of Hermite interpolation bases and of
monomial bases for the numerical solutions of boundary value problems (BVP). In the solution of
BVPs, when piecewise polynomials are used, the continuity conditions that are imposed in effect
feed information into each subinterval from its endpoints. Thus, for BVPs, the use of monomial
bases is akin to using Hermite bases, with a node at each end of the subinterval and with high
confluency.

The main practical observation is that B(¢) is usually smaller for Hermite interpolation bases
than it is for monomial bases that are based at one endpoint of the interval or for Newton bases
ordered from one end to the other [24]. Note that this observation is in some sense intuitively
plausible. If all our information about p(t) is concentrated at ¢t = 0, then good predictions about
the behaviour of the interpolant p(t) at ¢ = 1 might be harder than if p(t) were known more
uniformly in [0, 1] instead.

3.1 On the sources of errors

In the present work, we scale the integration step [t,,, t,+1] to the unit interval: t = t,,+(tp41—tn)0,
0 < 6 < 1. This choice of scaling multiplies derivatives by multiples of h,, = ¢, 41 — t,, and further
implies that errors in y will be compared against errors in (e.g.) h,, y. Perturbations in the locations
of the nodes 7; themselves will not be considered here, but see [24] for expressions and recurrence
i

Tk ’

relations for

4 Rootfinding without changing basis

If we wish to find A such that p(A) = 0 (more specifically, A € [t,,,tn+1] 2 p(A) = 0), then there
are many numerical methods available. We sketch some in Section 7. However, most numerical
methods find only one root at a time and require good initialization. On the other hand, most
methods that use the fact that p(t) is polynomial in ¢ find all roots but usually require that a
monomial basis expression for p(¢) be computed first. We wish to avoid this step because, as is
well-known, the root-finding problem associated with the resulting expression can be (and often
is) ill-conditioned. Instead, we develop a special-purpose method that works directly from Hermite
interpolation data. Such an approach would need to preserve the good conditioning properties of
the Hermite basis itself and would need to be reasonably efficient, but most of all, would need to
be flexible.

It turns out that there is a companion matrix pencil that linearizes—that is, converts to a
generalized eigenvalue problem—any polynomial p(t) written in a Hermite interpolation basis.
This extends work of [2].

© 2008 European Society of Computational Methods in Sciences and Engineering (ESCMSE)



Hermite Interpolants for Event Location 9

Theorem 4.1 [23, 24] Let

(Thy oo s T1, T2y e ey T2y oo e s Ty e ooy i) (22)
— e N—— N—_——
s1 times So times Sn times

be the confluent nodes with s; being the confluency of the node 7; (1 < i < n). With the convention

P =p® () (0<k<si—1), (23)
we assume 0 1 1
@, pM, Y p @ plen 1)y (24)

are the values of the polynomial p(t) € Py and the values of its derivatives at the given nodes. Then,
a companion pencil (Co, Cy) € [ClA+2x(d+2)12 4 the Hermite basis which satisfies det (tC; — Cp) =
p(t) is

i JT(Tl) H1 1
Jg(’l’g) ].-.[2 ].
Co = S, Ci= ; (25a)
JI(r,) IO, 1
. -1, Iy ... -TI, 0 0
I Ti 1
Ti 1
Ji(m) = S € Coxs (1<i<n) (25b)
L TZ
p® I Y ,
Hi:[ L (57_1),] € C¥*7, (1<i<n) (25¢)
“Ti=[ =70, -r —Yisi-1 ] €CH™ (I<i<n). (25d)

Thus, generalized eigenvalues of the pencil (Cg, C;) are roots of p(t). The matrices are of
dimension (d + 2) x (d + 2), so there are two spurious roots at infinity, but these do not bother
us (they are a slight annoyance, no more). There is (in the Lagrange case) a d x d pencil, and
it seems that this can be extended to the Hermite case, but because it singles out two nodes for
special treatment, there is some potential instability; for our purpose, the present pencil is better.

It is easy to construct the matrices (25a). It is similarly easy to compute the generalized
eigenvalues by calling built-in routines such as eig in MATLAB. We then discard all A not of
interest (including the spurious infinite eigenvalues). Identification of the first root, which defines
the event, is straightforward.

Remark: Hermite interpolants are well-conditioned only in a small region near the set of
interpolation points [9, 8]. Computed roots much outside an interval containing the nodes (say,
two or three units away) are inaccurate. Thus it is easy to discard the spurious infinite roots.
However, scaling of the generalized barycentric weights and the polynomial values is critical to the
success of the generalized eigensolver. We recommend scaling the last block row and block column
of Cq so that ||II||s = ||IT'|lec =1 (cf Table 1). From the second barycentric form (7b), both these
vectors may be multiplied by any nonzero constant without changing the generalized eigenvalues.

The use of eigenvalue problems of companion matrices of polynomials expressed in the monomial
basis has been widely studied. As a polynomial root-finding strategy, it is believed to be numerically
stable in all but very exceptional circumstances [20, 27, 11]. Of course, the poor conditioning of the

© 2008 European Society of Computational Methods in Sciences and Engineering (ESCMSE)



10 Corless et al.

monomial basis means that even though the solving step is stable, the results might be poor: it is
not a good idea to convert to the monomial basis in order to use a standard (Frobenius) companion
matrix as input to an eigenvalue solver. But that is precisely what we avoid by using the Hermite
companion pencil. We have observed in our experiments that the computation of the eigenvalues
of the Hermite companion pencil seems to be just as numerically stable as the standard companion
matrix is, and we expect that the arguments of [11] might well be extendable to this “new” basis.
As of time of writing, this numerical stability of root-finding of Hermite polynomial interpolants
remains a plausible conjecture. The consequence is, since the Hermite basis is well-conditioned,
that the computed roots should be as accurate as the data generated by the IVP solver.

It is true that this approach is more computationally expensive than it needs to be. The
cost of solving a generalized eigenproblem is O(d®) and one would expect O(d?) methods to be
constructible, or even O(d) if we restrict attention to the smallest root in the interval [t,, t,41].
We sketch some such approaches to faster, special-purpose methods in Section 7. However, for low
or moderate degrees d this expense does not seem too onerous.

Finally, the eigenvalue approach easily generalizes via tensor products to the matrix polynomial
case. This allows bivariate problems to be solved via resultant-like matrices, e.g., the Bezoutian.
See [23] and [24] for details of this approach. The use of Bezoutians might be of interest for
bifurcation problems for IVP or for DAE; we do not report on this here.

5 Examples

5.1 Cubic Hermite Interpolant

As an important example, the generalized eigenproblem for the cubic Hermite interpolant satisfying

p(0) =p1o, p(1)=p20 (26a)
dp dp
20) = £ = ) 26b
d9( )=p11, dG( ) = P21 (26b)
is
0 P1,0 1
10 P11 1
Co = 1 p20 |, Ci1= 1 ; (27)
1 1 ,0271 1
-2 -1 2 -1 0 0
and inspection shows
det (901 — Co) = p(9) . (28)
The (negative) generalized barycentric weights —2, —1,2, and —1 arise because
1 2 1 2 1
_f, - - 29
PO—12 6 2 o-1 (6-17 (29)
as can be easily verified.
The differentiation matrix is
1

and this gives derivatives with respect to 6 on the nodes.

© 2008 European Society of Computational Methods in Sciences and Engineering (ESCMSE)



Hermite Interpolants for Event Location 11

5.2 Companion matrix pencil for rational functions

We can construct a companion pencil for the numerator of a rational function f(t) = p(t)/q(t)
directly from the Hermite data for the rational function f together with the Hermite data for the
denominator q. We first construct the partial fraction expansion of the function 1/w(t), by means
of equation 4 with ¢(¢) replaced by 1:

1 - i
w(t) Z t —ﬁyn)m ' (31)

This defines the 7; ; uniquely, and the algorithm of [24] suffices to find them stably. Next, determine
Hermite data for the proposed denominator ¢(t), i.e., o, = q®) (7;)/k!. Then the barycentric form
of the Hermite interpolant of ¢(¢) can be rewritten by interchanging the order of summation:

a) _N~Ny }
r Z YiOig(t — 7)1 (32a)
wlt) I iZE
n 87;71 ’,5/ )
_ 1,] .
- Z D with (32b)
=1 j=
Siflfj
Fig 1= D ViktiOik (32¢)
k=0

The new generalized barycentric weights 4; ; resulting from (32c) depend on the data for ¢(¢). In
fact, it is these weights that are used in (7), but the hats were dropped in that section, because
the computation of the 7;; for the denominator 1 is really just an intermediate computation.
Keeping the hats in this section for clarity, however, the companion matrix pencil for the numerator
polynomial p(¢) is as in Theorem 4.1, i.e.,

J?(Tl) H1 1
Jg(Tg) Hg 1
Cy = : ., C;= , (33a)
JI(r,) II, 1
-, I, -, 0 0
where
Li=[ 40 - Hisio1]- (33b)

The blocks J; and IT; in (33a) are as in (25) with the values p; j giving values of f(t) = p(t)/q(t)
asin (1) (1 <1< n,0<k<s;—1). We have that det (¢C; — Cq) = p(t) where

© 2008 European Society of Computational Methods in Sciences and Engineering (ESCMSE)



12 Corless et al.

5.3 Use with shape-preserving interpolants

In the notation of [7], we construct a cubic rational interpolant according to

_ PO
s(z) = o0 (34a)
0= w ,and (34b)
QO)=1+(r—3)0(1—-0). (34c)

The numerator P(6) is chosen to satisfy the conditions

S(CL'n) =Yn, s(anrl) = Yn+1
fas 8'(Tng1) = fot1 (34d)

w
~
—
8
3
N
I

The “shape parameter” r is chosen on each interval in such a way as to guarantee monotonicity of
the interpolant (if the data suggest y(z) is monotone) or convexity (if the data suggest convexity
instead); the interpolant can be constructed to guarantee both. For various reasons, it may be
desirable to use this for event location and not just plotting. Further, higher-order shape-preserving
interpolants may also be of interest [10]. The companion matrix method allows a simple zero-finding
algorithm valid for all such. We demonstrate with the Brankin & Gladwell interpolant.

In our notation, we compute

Q) 1 r—1 1-r 1

POo—12 " 8 To-1 g-12 (35)

which gives the generalized barycentric weights
(Y1,0: 91,1, 92,0:921), = [r =1, 1,1 —r,1]. (36)

Then, the nontrivial matrix in the companion pencil is

0 Yn
1 0 I fr
Co = 1 Yntl - (37)

1 1 hnfn+1
1—r -1 r—1 -1 0

We have det (ACy, — Cy) = P(0), where s(z) = P(0)/Q(0), and hence all zeros of s(x) are shifted
and scaled generalized eigenvalues of the pencil (Cg, Cy). This can be extended to any rational
interpolant with denominator of fixed form.

By our MATLAB program (interpolating numerical r) we find that the differentiation matrix is

1
D — —2r 2-—2r 2r —? (38)

2r 2 —2r —=2+42r

and this gives derivatives with respect to 6 on the nodes.
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5.4 A higher-order example

For higher-order one-step methods, several approaches yield accurate local interpolants. In [26], for
example, we find a discussion of inexpensive and accurate local interpolants that are of the Hermite
type studied here. We take just one example, the quartic Hermite interpolant given by value and
derivative data at each endpoint, and the value (only) at some interior point. For example, some
methods make the value at the midpoint available as a natural byproduct of the computation.
Thus our confluency vector is [2, 1, 2].

To add an indicative complication purely as motivation, we suppose further that we wish to use
the Brankin-Gladwell rational interpolant as a model, and insist on the denominator (35). Then,
the generalized barycentric weights are

(91,0, ¥1,1, 92,0, ¥3,0, 93,1}, = [=8 = 2(r — 3), =2,16 + 4(r — 3), -8 — 2(r — 3), 2] . (39)

The differentiation matrix is (by MAPLE, and note that entries are nonlinear in r this time)

0 1 0 0 0
—6r—4 —2—-2r 8r+8 —-2r—4 2
D=| - _—@a+n)™" 0 M (1)) (40)
0 0 0 0 1
| —2r—4 -2 8r+8 —6r—4 27 +2

and the nontrivial companion matrix is

0 Yn
1 0 b fon
_ 1/2 Yn+1/2
Co = 1 Ynt1 (41)
1 1 hnfn-i—l

—8-2(r—3) -2 16+4(r—3) -8-20r—3) 2 0

6 Implementations

Both MAPLE and MATLAB implementations of the methods of this paper have been coded. For
construction of low-order fixed interpolants, code in MAPLE is scarcely needed: the built-in facilities
for constructing partial fractions, differentiation, and manipulation suffice. Nonetheless, the series
algorithm of [24] was so coded, and is available on the ORCCA technical report web site. This
code is especially convenient for construction of interpolants containing symbolic parameters for
shape-preservation. See www.orcca.on.ca/TechReports/2007/TR-07-05.html

Evaluation of fixed low-order interpolants and their derivatives in MATLAB is similarly easy (es-
pecially if they were constructed in MAPLE, because it is a simple matter to use the Codegeneration
[Matlab] routine to export the formulae). Nonetheless, an explicit numerical version of the (fully
general) series algorithm of [24] was also coded, and is also available on the ORCCA technical
report web site. Linear parameters can be handled relatively easily by interpolation, as was done
in the examples in this present paper.

7 Alternative root-finding methods

Using generalized eigenvalue solvers may strike the reader as being inefficient. Even using simple
eigenvalue solvers seems extravagant at first glance, but see [14] for a study of comparative effi-
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ciency, which is generally favorable to the eigenvalue approach. Still, generalized eigenvalue solvers
can be five times slower than simple eigenvalue solvers, so alternatives may be of interest.

7.1 Simultaneous Iterations

Recent work by Bini, Gemignani and coworkers on structured QR iteration may prove useful
here [6, 13]. Victor Pan (private communication) suggests Weierstrass iteration [18], and this may
prove eventually to be the method of choice.

7.2 One root at a time

One may wish faster methods, if only one root is to be found, in the case where it is known that
there is only one. This section sketches some possibly interesting methods. Given

n s;—1 jJ
Z Z Z%‘,jﬂi,k(t — )
}ﬂ =1 j=0 k=0 (42)
O R T
Z Z Yij(t—7) 777!
i=1 j=0

note that the roots of p(t) are the same as that of the rational function

n Sifl _]

= Z Z Z’Y JPi, k(t ‘)k7j71 (43)
0 k=0

=1 j=
which has the advantage that its derivative is simple:

n s;i—1 jJ

Z Z Z(k‘ —§ = Dyigpin(t — )72 (44)
i=1 j=0 k=0

and so Newton’s method becomes attractive. We remark that p(t) = w(t)r(t), where w(t) is as in
Equation (3) and so

wi) g~ s .

whence

t—T;

p(t) = w(t) (Z = ) r(t) +w(t)r'(t) (46)

so p'(t) is not much more complicated. In all cases, we must avoid ¢ = 7; for any node. Newton’s
formula for a root of r(t) is

r(Am)
= A — 4
)\m+1 )\m T/()\m) ( 7)
whereas that for p(t) is
r m
Hm4+1 = Um — G )n s (48)
) () Y ———
(k) +7(p )H prp——
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and one may switch between formulas, if desired. The secant method is also potentially attractive,
but we do not pursue this here.

Experimentation is needed to decide which of these alternatives, if any, is to be preferred;
in the meantime, the companion matrix method allows experimentation. Initial guesses may be
obtained in many cases by examining the end point data. In the case of cubic Hermite polynomial
interpolation, a comprehensive scheme may be worked out to decide if roots are guaranteed to
exist on [0,1] or not. For example, if y, and y,, are positive, but y,11 > 0 and y;,,; < 0, there
can be no real root in the time step (because otherwise there would be three extrema, and there
can be only two). Again we do not pursue this further, here.

8 Concluding Remarks

We have presented a uniform method for using general rational Hermite interpolants for various
purposes in IVP codes for ODE, including event location for polynomial events. This method relies
on the good conditioning of rational Hermite interpolants, on the apparent numerical stability of
their construction, and on the apparent numerical stability of the solution of a recent general-
ized companion matrix pencil. All three of these “legs” on which this paper stands need further
investigation and formal proof, but our experiments indicate that these should be successful.
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