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Abstract: In this paper, we present rate of convergence estimates for eigenvalues and
eigenvectors of elliptic differential operators on non-smooth domains using non-conforming
spectral element methods. We define a class of compact operators on Banach space which
is used to obtain the results. If coefficients of the differential operator are sufficiently
smooth and the boundaries of the polygonal domain are piecewise analytic then exponential
convergence to approximate solution is obtained.
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1 Introduction

In this paper, we present convergence estimates for eigenvalues and eigenvectors of elliptic differen-
tial operators using spectral element methods. In the era of computation the spectral methods have
been proven to be faster and more accurate as compared to other alternative methods like finite
element methods and finite difference methods [7, 9, 14], and the references therein. The method
provides exponential convergence if the solution is sufficiently smooth, which would normally be
lost when the solution shows singular behaviour at the corners of non-smooth domains.

Spectral methods for solving the problems on non-smooth domains allow only algebraic con-
vergence [9, 14] which can be improved by use of auxiliary mapping of the form z = log ξ, as
proposed by Kondratiev [15]. Babuska and Guo used geometrically fine geometrical mesh in the
neighborhood of each of the corner in the framwork of finite element method [2, 3, 4]. To over-
come the singularities at corners we also use similar kind of geometrically fine geometrical mesh
and auxiliary mapping for obtaining exponential accurate solutions. Spectral methods for solving
elliptic boundary value problems on non smooth domains proposed in [13, 18]. The author et al.
have obtained the solution of elliptic eigenvalue problems on non smooth domains using spectral
element method [6].
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In [8] Bramble and Osborn developed spectral approximation results for a class of compact
operators on a Hilbert space and used the operators to obtain rate of convergence estimates for
the approximation of eigenvalues and generalized eigenvectors of non-selfadjoint elliptic differential
operators using Galerkin type methods. Later in [16] Osborn presented the spectral approximation
results for compact operators on a Banach space. The author claimed the use of these results for
various kind of approximation like, approximation of integral operators by numerical quadrature,
Galerkin approximation for non-selfadjoint elliptic differential operators and formulated the results
for approximation of eigenvalues and generalized eigenvectors of elliptic eigenvalue problems in
terms of the norm on the underlying Banach spaces. Descloux et al. in [11, 12] developed the
convergence estimates for non compact operators on Banach Spaces which were approximated by
Galerkin method.

In our work, the rate of convergence of eigenvalues is reduced to the problem of rate of con-
vergence of the approximate solution of corresponding elliptic boundary value problems as [5, 8].
Similar to [16] we define a compact operator T : V → V, V is a Banach space, and a family of
compact operators T P : V → V, such that T P → T in H1 norm, as P → ∞. Here P denotes the
degree of polynomials. We obtain the convergence estimates of T P , from T using spectral element
method. Babuska et.al [5] have shown that a compact operator T satisfies the variational formu-
lation a(T u, v) = b(u, v) corresponding to elliptic boundary value problems. Let λ be a nonzero
eigenvalue of T which satisfies variational formulation a(u, v) = λb(u, v), u is called an associate
eigenvector, corresponding to eigenvalue problems. Similarly we concluded that (λ, u) is an eigen-
pair of eigenvalue problem if and only if λT u = u, i.e. (λ−1, u) is an eigenpair of the compact
operator T [5, 10]. Further we define an integer ι which satisfy N ((λ − T )ι) = N ((λ − T )ι+1),
where N denotes the null space, is called the ascent of λ−T . The vectors in N ((λ−T )ι) are called
the generalized eigenvectors of T corresponding to λ [5, 8, 16].

The outline of the paper is as follows. In section 2, we define our problem on non-smooth
domain and discuss the discretization of the domain. In section 3, we present our main result
which shows exponential convergence for the approximation of eigenfunctions.

2 Discretization

In this section we explain the methodology and discretization of domain for elliptic boundary value
problems. Consider the boundary value problem

Lu = f in Ω,

u = g[0] on Γ[0],(
∂u

∂N

)
A

= g[1] on Γ[1]. (1)

Here L is a strongly elliptic operator defined as

Lu = −
2∑

i,j=1

∂

∂xi

(
ai,j(x)

∂u

∂xj

)
+

2∑
i=1

bi(x)
∂u

∂xi
+ c(x)u, (2)

where the coefficients ai,j(x) = aj,i(x), bi(x) and c(x) are analytic functions of x. Here
(
∂u
∂N

)
A is

the conormal derivative of u. Let A denote the 2× 2 matrix whose entries are given by

Ai,j(x) = ai,j(x),

for i, j = 1, 2. Then
(
∂u
∂N

)
A is defined as

(
∂u

∂N

)
A
=

2∑
i,j=1

ai,jnj
∂u

∂xi
, (3)
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where n(x) = (n1, n2) is the exterior unit normal to Γ at x. Here Γ denotes the boundary of the
domain. Further, let Γ = Γ[0] ∪ Γ[1], Γ[0] = ∪i∈DΓ̄i and Γ[1] = ∪i∈N Γ̄i. Γ[0] denotes the Dirichlet
boundary and Γ[1] the Neumann boundary.

Let Ω be a polygon with vertices A1, ..., Ap and corresponding sides Γ1, ...,Γp, where Γi joins
the points Ai−1 and Ai. We divide Ω into p sub domains S1, S2, ..., Sp such that each Sk contains
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Figure 1: Discretization of the domain Ω into p non overlapping subdomains.

only the singularities at the vertex Ak, see Fig. 1. Then the sector Sk with center at Ak is defined
by

Sk = { (x, y) | 0 < rk < ρ,ψkmin < θk < ψkmax }. (4)

Here (rk, θk) are polar coordinates at vertex Ak and ρ is chosen such that Sk ∩ Sl = ∅ for k �= l.
{ψki | i = 1, ..., Ik+1} is an increasing sequence of points such that ψk1 = ψkmin and ψkIk+1

= ψkmax.

Choose μ = (μ1, ..., μp) to be the geometric ratios with 0 < μi < 1. Let

σk1 = 0 and σkj = ρ(μk)
N+1−j for 2 ≤ j ≤ N + 1,

and
Ωki,j = { (rk, θk) | σkj < rk < σkj+1, ψ

k
i < θk < ψki+1 }, (5)

for 1 ≤ i ≤ Ik, 1 ≤ j ≤ N .
Next, we define ηkj = ln σkj for 0 ≤ j ≤ N + 1. Here ηk0 = −∞. Now we shall denote the image

of Ωki,j in (τk, θk) coordinates by Ω̃ki,j , where

Ω̃ki,j = { (τk, θk) | ηkj < τk < ηkj+1, ψ
k
i < θk < ψki+1 }, (6)

for 1 ≤ i ≤ Ik, 0 ≤ j ≤ N . In doing so the geometric mesh Ωki,j for 1 ≤ j ≤ N reduces to a quasi

uniform mesh. However Ω̃ki,0 is a semi-infinite strip.

In the remaining part of Sk, we retain the Cartesian coordinate system (x, y). Let

Op+1 = {Ωki,j | 1 ≤ k ≤ p,N < j ≤ Jk, 1 ≤ i ≤ Ik}.

We shall relabel the elements of Op+1 and write

Op+1 = {Ωp+1
l | 1 ≤ l ≤ L}, (7)
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where L denotes the cardinality of Op+1. Henceforth the elements in Op+1 are chosen to be
rectangles.

We shall now define the set of non-conforming spectral element functions in a general monomial
form over the sectoral neighbourhood in (τk, θk) coordinates, where τk = ln rk. However away
from the corners the spectral element functions are defined in (ξ, η) coordinates [6, 13]. Let
{{ûki,j(τk, θk)}i,j,k} ∈ ΠN,P be spectral element functions defined, by assuming that the cornermost

element is constant, i.e. ûki,1 = ck for all 1 ≤ i ≤ Ik and

ûki,j =

Pj∑
r=0

Pj∑
s=0

br,sτ
r
kθ
s
k,

on Ω̂ki,j for 1 ≤ i ≤ Ik, 2 ≤ j ≤ N, 1 ≤ k ≤ p. Here 1 ≤ Pj ≤ P.

Moreover, there is an analytic mapping Mp+1
l from the master square S = (−1, 1)2 to Ωp+1

l and
hence spectral element function is define by

ûp+1
l (ξ, η) =

P∑
r=0

P∑
s=0

br,sξ
rηs.

Let d (Ak, γs) = infx∈γs{distance(Ak, x)} denote the distance between x and vertex Ak. Let β =
(β1, β2, ..., βp) denote a p-tuple of real numbers, 0 < βi < 1, i = 1, ..., p.

Let f ∈ H1,0
β (Ω) and we choose β

′
k so that β∗

k < β
′
k < βk then by shift theorem [1] the solution

of (1) exists in H3,2

β′ (Ω). Further by using the Remark 3 of [2] we can obtained the estimates

‖u‖H3,2

β
′ (Ω) ≤ C‖f‖H1,0

β
′ (Ω). (8)

We now define the quadratic form which is needed in the sequel.

VN,Pvertices

(
{ûki,j(τk, θk)}i,j,k

)

=

p∑
k=1

N∑
j=2

Ik∑
i=1

(ρμN+1−j
k )−2αk

∥∥∥L̂kûki,j(τk, θk)
∥∥∥2
0,Ω̂k

i,j

+

p∑
k=1

∑
γs⊆Ωk∪Bk

ρ ,

μ(γ̂s)<∞

d(Ak, γs)
−2αk

(∥∥[ûk]∥∥2
0,γ̂s

+
∥∥[ûkτk]

∥∥2
1
2 ,γ̂s

+
∥∥[ûkθk]

∥∥2
1
2 ,γ̂s

)

+
∑
l∈D

l∑
k=l−1

⎛
⎜⎜⎝| ck |2 +

∑
γs⊆∂Ωk∩Γl,

μ(γ̂s)<∞

d(Ak, γs)
−2αk

(∥∥ûk − ck
∥∥2
0,γ̂s

+
∥∥ûkτk

∥∥2
1
2 ,γ̂s

)
⎞
⎟⎟⎠

+
∑
l∈N

l∑
k=l−1

∑
γs⊆∂Ωk∩Γl,

μ(γ̂s)<∞

d(Ak, γs)
−2αk

∥∥∥∥∥
(
∂ûk

∂n

)
Âk

∥∥∥∥∥
2

1
2 ,γ̂s

. (9)

Here μ(γ̂s) is the length of the curve γ̂s and αk = 1− β∗
k .
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Next, we define

VN,Pinterior

(
{ûp+1

l (ξ, η)}l
)

=

L∑
l=1

∥∥∥Lp+1
l ûp+1

l

∥∥∥2
0,S

+
∑

γs⊆Ωp+1

(∥∥[up+1
]∥∥2

0,γs
+
∥∥[up+1

x1

]∥∥2
1
2 ,γs

+
∥∥[up+1

x2

]∥∥2
1
2 ,γs

)

+
∑
l∈D

∑
γs⊆∂Ωp+1∩Γl

(∥∥up+1
∥∥2
0,γs

+

∥∥∥∥∂u
p+1

∂t

∥∥∥∥
2

1
2 ,γs

)

+
∑
l∈N

∑
γs⊆∂Ωp+1∩Γl

∥∥∥∥
(
∂up+1

∂n

)
A

∥∥∥∥
2

1
2 ,γs

. (10)

Let

VN,P
(
{ûki,j(τk, θk)}i,j,k, {ûp+1

l (ξ, η)}l
)

= VN,Pvertices

(
{ûki,j(τk, θk)}i,j,k

)

+VN,Pinterior

(
{ûp+1

l (ξ, η)}l
)
. (11)

All the required terms in above definition are widely explained in [6].

3 Convergence estimates

In this section we shall obtain estimates for the error in approximating the eigenvalues and eigen-
vectors which is similar to the proof of error estimates in [6, 18].

Let T be a compact operator and T P be a family of compact operators. Then we can relate
the projection onto the generalized null space corresponding to eigenvalue λ to the projection
associated with part of the spectrum of T P . Let λ be a nonzero eigenvalue of T with algebraic
multiplicity m and Γ be a circle centered at λ which lies in ρ(T ) and contains no other points of
σ(T ). Then the spectral projection associated with (λ, T ) is defined by

E = E(λ) =
1

2πi

∫
Γ

Rz(T )dz. (12)

Here E is a projection onto the space of generalized eigenvectors associated with λ and T , i.e.,
R(E) = N ((λ− T )ι), where R(E) denotes the range of E [10].

Theorem 3.1 Let f ∈ R(E). Then there exist constants a and k such that

‖
(
T − T P

)
f‖ ≤ a e−k P . (13)

Proof: Let f ∈ R(E) and u = T (f). Then T is compact operator [14],[17]. Let Ûki,j(τk, θk) =

u(x1, x2)−ck for (τk, θk) ∈ Ω̃ki,j , and ck = u(Ak). Then by using Proposition 2.1 of [13] the estimate

∫ ηkj+1

ηkj

∫ ψk
j+1

ψk
j

∑
|ε|≤m

|Dε1
τk
Dε2
θk
(Ûki,j)|2e−2λkτkdτk dθk

≤ C(ρμN+1−j
k )2γk(Cdm−2(m− 2)!)2 (14)

holds for 1 ≤ j ≤ N, where 0 < λk < αk and γk < αk−λk. Here C and d are constants independent
of m.

c© 2015 European Society of Computational Methods in Sciences and Engineering (ESCMSE)
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Now consider a quadrilateral Ωp+1
l ∈ Ωp+1. Let

Ûp+1
l (ξ, η) = u

(
Mp+1
l (ξ, η)

)
.

Then the following has been proved in Lemma 5.1 of [4].
Ûp+1
l (ξ, η) is analytic on S̄ and hence for some constants C and d, we have

| DαÛp+1
l (ξ, η) |≤ C dmm! (15)

for |α| = m, m = 1, 2, ...
Now using the results on approximation theory in [4, 17] there exists a polynomial Φ̂p+1

l (ξ, η) of
degree P in each variable separately such that

‖Ûp+1
l (ξ, η)− Φ̂p+1

l (ξ, η)‖22,S ≤ CsP
−2s+8(Cdss!)2 (16)

for 1 ≤ l ≤ L, where Cs = Ce2s.
Define Ûki,j(τk, θk) = u(x1, x2) − ck for (x1, x2) ∈ Ωki,j , where ck = u(Ak). Then there exists a

polynomial Φ̂ki,j(τk, θk) of degree Pj in τk and θk separately such that

‖Ûki,j(τk, θk)− Φ̂ki,j(τk, θk)‖22,Ω̃k
i,j

≤ CsjP
−2sj+8
j (χk)

2sj‖Ûki,j‖2sj ,Ω̃k
i,j

(17)

where

χk = max

{
1

2
maxi(Δψ

k
i ),

| lnμk |
2

, 1

}
. (18)

We now define the functional which is to be minimized.

RN,P
vertices

(
{ûki,j(τk, θk)}i,j,k

)

=

p∑
k=1

N∑
j=2

Ik∑
i=1

(ρμN+1−j
k )−2αk

∥∥∥L̂kûki,j(τk, θk)− F k(τk, θk)
∥∥∥2
0,Ω̂k

i,j

+

p∑
k=1

∑
γs⊆Ωk∪Bk

ρ ,

μ(γ̂s)<∞

d(Ak, γs)
−2αk

(∥∥[ûk]∥∥2
0,γ̂s

+
∥∥[ûkτk]

∥∥2
1
2 ,γ̂s

+
∥∥[ûkθk]

∥∥2
1
2 ,γ̂s

)

+
∑
l∈D

l∑
k=l−1

⎛
⎜⎜⎝| ck |2 +

∑
γs⊆∂Ωk∩Γl,

μ(γ̂s)<∞

d(Ak, γs)
−2αk

(∥∥ûk − ck
∥∥2
0,γ̂s

+
∥∥ûkτk

∥∥2
1
2 ,γ̂s

)
⎞
⎟⎟⎠

+
∑
l∈N

l∑
k=l−1

∑
γs⊆∂Ωk∩Γl,

μ(γ̂s)<∞

d(Ak, γs)
−2αk

∥∥∥∥∥
(
∂ûk

∂n

)
Âk

∥∥∥∥∥
2

1
2 ,γ̂s

. (19)
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Next, we define

RN,P
interior

(
{ûp+1

l (ξ, η)}l
)

=

L∑
l=1

∥∥∥Lp+1
l ûp+1

l − F p+1
l (ξ, η)

∥∥∥2
0,S

+
∑

γs⊆Ωp+1

(∥∥[up+1
]∥∥2

0,γs
+
∥∥[up+1

x1

]∥∥2
1
2 ,γs

+
∥∥[up+1

x2

]∥∥2
1
2 ,γs

)

+
∑
l∈D

∑
γs⊆∂Ωp+1∩Γl

(∥∥up+1
∥∥2
0,γs

+

∥∥∥∥∂u
p+1

∂t

∥∥∥∥
2

1
2 ,γs

)

+
∑
l∈N

∑
γs⊆∂Ωp+1∩Γl

∥∥∥∥
(
∂up+1

∂n

)
A

∥∥∥∥
2

1
2 ,γs

. (20)

Let

RN,P
(
{ûki,j(τk, θk)}i,j,k, {ûp+1

l (ξ, η)}l
)

= RN,P
vertices

(
{ûki,j(τk, θk)}i,j,k

)

+RN,P
interior

(
{ûp+1

l (ξ, η)}l
)
.

Define Ψ̂ki,0(τk, θk) = ck for 1 ≤ i ≤ Ik, 1 ≤ k ≤ p, and Ψ̂ki,j(τk, θk) = Φ̂ki,j(τk, θk) + ck for

(τk, θk) ∈ Ω̃ki,j and Ψ̂p+1
l (ξ, η) = Φ̂p+1

l (ξ, η) for (ξ, η) ∈ S.
Now ∥∥∥L̃kΨ̂ki,j − F ki,j

∥∥∥2
0,Ω̃k

i,j

≤
∥∥∥L̃k(Ψ̂ki,j + ck)− L̃k(Ûki,j + ck)

∥∥∥2
0,Ω̃k

i,j

(21)

Hence

(ρμN+1−j
k )−2αk

∥∥∥L̃kΨ̂ki,j − F ki,j

∥∥∥2
0,Ω̃k

i,j

≤ (ρμN+1−j
k )−2αk

∥∥∥L̃k(Φ̂ki,j + ck)− L̃k(Ûki,j + ck)
∥∥∥2
0,Ω̃k

i,j

≤ C(ρμN+1−j
k )−2αk

∥∥∥Φ̂ki,j − Ûki,j

∥∥∥2
2,Ω̃k

i,j

≤ (ρμN+1−j
k )−2αkCsj (Pj)

−2sj+8(χ
k
)2sj

∥∥∥Ûki,j
∥∥∥2

2,Ω̃k
i,j

≤ Csj (Pj)
−2sj+8

(
C(ρμN+1−j

k )γk(χ
k
d)sj−2(sj − 2)!

)2
. (by 14)

We proceed all the other terms of RN,P
exterior

({
Ψ̂ki,j(τk, θk)

}
i,j,k

)
in same fashion and finally esti-

mate

RN,P
exterior

({
Ψ̂ki,j(τk, θk)

}
i,j,k

)
≤

p∑
k=1

N∑
j=1

Csj (Pj)
−2sj+8

(
C(ρμN+1−j

k )γk(χ
k
d)sjsj !

)2
. (22)

Similarly it can be shown that

RN,P
interior

({
Ψ̂p+1

l (ξ, η)
}
l

)
≤
(
Cs(P )

−2s+8(Cdss!)2
)
. (23)

c© 2015 European Society of Computational Methods in Sciences and Engineering (ESCMSE)
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We choose

αj ≤ Pj ≤ βP, where 0 < α and β ≤ 1, (24)

sj ≤ ΥPj , where 0 < Υ < 1. (25)

Moreover s = ΥP.
Now by using Stirling’s formula

n! ∼
√
2πn e−nnn,

we obtain

RN,P (
{
Ψ̂ki,j(τk, θk)

}
i,j,k

,
{
Ψ̂p+1

l (ξ, η)
}
l
)

≤
p∑
k=1

N∑
j=1

C(Pj)
8(ρμN+1−j

k )2γk
(
2πΥPj(χk

Υd)2ΥPj
)

+C
(
P 8(2πΥP )(Υd)2ΥP

)
.

Select Υ so that (χ
k
Υd) < 1 for all k and Υd < 1. Then there exists a constant b > 0 such that

the estimate

RN,P

({
Ψ̂ki,j(τk, θk)

}
i,j,k

,
{
Ψ̂p+1

l (ξ, η)
}
l

)
≤ Ce−bP (26)

holds.
Let

(
{ŵki,j(τk, θk)}i,j,k, {ŵ

p+1
l (ξ, η)}l

)
be the space of spectral element functions, which mini-

mizes the functional RN,P
(
{Ψ̂ki,j(τk, θk)}i,j,k, {Ψ̂

p+1
l (ξ, η)}l

)
over all i,j,k.

Hence
RN,P

({
ŵki,j(τk, θk)

}
i,j,k

,
{
ŵp+1

l (ξ, η)
}
l

)
≤ Ce−bP . (27)

Therefore we can conclude that

VN,P
({

Ψ̂ki,j(τk, θk)− ŵki,j(τk, θk)
}
i,j,k

,
{
Ψ̂p+1

l (ξ, η)− ŵp+1

l (ξ, η)
}
l

)
≤ Ce−bP (28)

Hence by using the Stability Theorem 3.1 of [13] it can be shown that there exist constants a and
k such that

p∑
k=1

⎛
⎝| ck − hk |2 +

N∑
j=1

Ik∑
i=1

(ρμN+1−j
k )−2λk‖(ŵki,j − Ûki,j)(τk, θk)− (hk − ak)‖22,Ω̃k

i,j

⎞
⎠

+
L∑
l=1

‖(ŵp+1
l − Ûp+1

l )(ξ, η)‖22,S ≤ ae−k P (29)

holds.
Now we construct a set of corrections

(
{α̂ki,j(τk, θk)}i,j,k, {α̂

p+1
l (ξ, η)}l

)
∈ ΠN,P such that

(
{r̂ki,j(τk, θk)}i,j,k, {r̂p+1

l (ξ, η)}l
)

=
(
{ŵki,j(τk, θk)}i,j,k, {ŵp+1

l (ξ, η)}l
)

+
(
{α̂ki,j(τk, θk)}i,j,k, {α̂p+1

l (ξ, η)}l
)

is conforming and belongs to H1(Ω) [6].
Define the operator T P (f) = r. Then T P is a compact operator since its range is finite dimen-

sional. Then the error estimate

‖(T − T P )(f)‖1,Ω ≤ ae−k P

holds for P large enough.
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4 Conclusion

In this paper, we defined a class of compact operators and used them to obtain the exponential con-
vergence for the approximation of eigenvalues and generalized eigenvectors of second order elliptic
differential operator on non-smooth domains, where the solution exhibit the singular behaviour at
corners, using non-conforming approach of spectral element methods.
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