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Abstract: One of the main problems of the non-equilibrium physical-chemical gas-dynamics
is considered: derivation of gas-dynamics equations for reactive gas mixtures. By non-
equilibrium effects we mean all kinds of effects caused by deviation of the distribution
function from its quasi-equilibrium value. The method which is used to obtain the normal
solution for the generalized Boltzmann equation is discussed. As opposed to the tradi-
tional approach, it permits a description of experimentally observed pressure dependence
of the reaction rates (low- and high-pressure limits) and to generalize the theory of ther-
mal dissociation for the arbitrary reaction case and for spatially inhomogeneous systems.
Conclusions concerning the necessity of revising the traditional approach to the chemical
reaction description and of developing the non-equilibrium chemistry are argued. In the
framework of the non-equilibrium chemistry, chemical reactions are no longer independent
of each other (Guldberg and Waage law is not applicable under the non-equilibrium condi-
tions) and corresponding reaction rates are functions of the reacting mixture composition.
Exact expressions for reaction and relaxation rates for the cut-off harmonic oscillator model
are obtained. Only the case of hard potentials in Grad’s meaning is considered, while soft
potentials remain an issue.
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1 Introduction

Gas-dynamics is one of the most formalized areas of physics, which has given rise to a now
global industry that is the computational fluid dynamics (CFD). However there are still many
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unsolved issues in this field, which mostly concern attempts to take into account complex physical-
chemical processes. These processes are usually connected with the non-equilibrium effects, by
which we mean all kinds of effects caused by the deviation of the distribution function from its
quasi-equilibrium value. In many cases non-equilibrium effects themselves are the reason for the
deviation and therefore need a self-consistent description. For reacting gases non-equilibrium ef-
fects lead to a dependence of the reaction rates, not only on temperature, but also on velocity
and concentrations of mixture species, i.e. on the composition of the mixture [1, 2]. The nucle-
ation problem meets the same problem, what is clear from recent investigations [3] and from the
quasi-chemical model analysis [4].

It is worth noting that such processes determine the behavior of gases under high Mach number
conditions, of plasma (rf- and other discharges are widely used in PECVD reactors), etc, which
means searching for their appropriate description is of great importance.

One of the challenging problems faced is: derivation of gas-dynamic equations for reacting
gas mixtures. After pioneering works on thermal dissociation of Stupochenko et al [5], the quasi-
stationary state (QSS) method for quasi-stationary distribution function calculation, and thus for
non-equilibrium reaction rates calculation was proposed and used in publications [6]. In paper [7]
the expression was derived for the reaction rate within the model that allows the exact solution.
This is a one-temperature model for the small admixture of the reacting gas, for which is assumed
the perturbation of the Maxwell-Boltzmann distribution for translational and vibrational degrees of
freedom for all components is negligible. In paper [8] the comparison was between our expressions
for reaction rates with corresponding results of the QSS method and appreciable differences were
observed. The QSS method is used in solving the set of state-to-state equations, derived from the
Boltzmann equation under the assumption the translational (and in some case rotational) degrees
of freedom obey the Maxwell-Boltzmann distribution. It does not permit building the rigorous
asymptotic approach for the gas dynamic equations derivation, within the QSS methodology. No
consequential asymptotic procedure within the QSS method is considered; only the path to calcu-
late the quasi-stationary state (zero-order approximation) and first-order corrections is discussed.
Thus, any approach that involves an asymptotic method based on the Boltzmann equation is more
general than the QSS method. Besides that, considering only state-to-state equations, none of the
QSS methodology authors deal with the spatially inhomogeneous effects. Taking the above into
account as well as the reasons discussed in [1, 2], the new method of deriving the solution for the
generalized Boltzmann equation for chemically reacting gases, proposed in [1] is the most general
to date method.

As discussed in paper [1] the difficulties one meets when trying to obtain macroscopic equations,
which can describe experimentally observed switching of the dependence of unimolecular reactions
under pressure from the square-law dependence at low pressures (bimolecular mechanism), to the
linear dependence at higher pressures (unimolecular mechanism). Analysis of the thermal dissoci-
ation problem [5] have shown that for reactive gas mixtures corresponding reaction rates are the
functions of the small parameter of the theory (Knudsen number). This means that to describe
the experimentally observed system behavior the re-normalized theory allowing the summation of
the contribution of the terms of different orders of magnitude is needed to be build. For this the
new method of obtaining a normal solution for the generalized Boltzmann equation for reacting
gas mixtures was proposed. It is based on the following items: (i) slow variables are introduced via
approximate summational invariants (ASI), defined within the method, (ii) a renormalized asymp-
totic procedure is formulated, which is made up of the distribution function separated into ’slow’
and ’fast’ parts. The kinetic equation is presented in the form of a singularly perturbed system for
gas-dynamic (slow) variables and for the ’fast’ part of the distribution function, (iii) a collisional
integral is not expanded into the series over the Knudsen number (no assumption is made that the
part of a collisional integral, responsible for the chemical reactions, can be treated as the pertur-
bation of its ’elastic’ part, as was suggested in publication [9] and since has been the basis for the
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general approach [10, 11]). While deriving the gas-dynamic equations it was shown that the role of
non-equilibrium effects is far more essential in our approach, than is generally accepted. Physically
non-equilibrium effects originate from the high sensitivity of the high-threshold-physical-chemical
processes, to the distribution function perturbations.

From several examples it was ascertained that non-equilibrium corrections and the traditional
equilibrium rate constants could be of the same order of magnitude. Our previous studies [2, 12]
show that via kinetics of high threshold physical-chemical processes, all generalized relaxation pro-
cesses described by Euler equations, became interdependent. By generalized relaxation processes
here we mean all processes that are described by gas-dynamic variables related to the approximate
summational invariants introduced in [1]. Evolution equations for these variables contain source
terms that determine coupling of their behavior with the evolution of other variables. Derived
gas-dynamic equations have more symmetrical form in comparison with traditional equations from
the point of view of describing the impact of the gas-dynamic variables on each other. Due to sym-
metry mentioned above these source terms will be called ”generalized relaxation rates” (GRR). All
GRR, being the rates of corresponding reaction/relaxation processes, are the complex functions
of species concentrations and coincide with the corresponding equilibrium values [10, 11] only if
the ratio of vibration and chemical characteristic time is set to zero. In this sense these terms are
called re-normalized. First attempt to obtain general expressions for these re-normalized GRR was
done in paper [12].

Detailed in this paper are the generalized relaxation rates considering the two-temperature
approximation and cut-off harmonic oscillator model. It is shown that the GRR are expressed as a
linear combination of the quasi-equilibrium GRR (i.e. calculated via quasi-equilibrium distribution
function) with coefficients being the functions of the set of gas-dynamic (slow) variables.

The paper is organized as follows. First the basic items of our method of solving the generalized
Boltzmann equation for reacting gases are described. The expressions for GRR for the cut-off har-
monic oscillator model are derived in the second section. As discussed the analysis pays attention
to the non-solved problems and traces further research.

2 State-of-the-art

2.1 Method description

Here the set of generalized Boltzmann kinetic equations for reacting gases, written in the dimen-
sionless form is under review

∂Fα

∂t
+ vα · ∇Fα =

1

ε
Iα(F ), (1)

where Fα, Iα and vα is the distribution function normalized to the number density, the collisional
integral and the velocity of the molecule of sort α respectively; ε is the ratio of characteristic times
of inelastic process to characteristic gas-dynamic time. The collisional integral can be represented
as [7, 13]

Iα =

|ν′|≤2∨|ν|≤1∑

ν,ν′

∑′

kν ,kν′

∫ ′
dvνdvν′W ν′

α,ν (vα, kα,vν , kν |vν′ , kν′)

⎡

⎣
∏

β∈ν′

Fβ

sβ(kβ)
− Fα

sα(kα)

∏

β∈ν

Fβ

sβ(kβ)

⎤

⎦ .

(2)
HereW is the transition probability that satisfies the microscopic reversibility lawW ν′

ν (vν , kν |vν′ , kν′) =
W ν

ν′(vν′ , kν′ |vν , kν); ν characterizes the reaction channel: ν = {ν1, ..., να, ...}, where να is a number
of particles of sort α in channel ν; |ν| = ν1 + ...+ να + ... is a total number of particles in channel
ν; kν = {kα : α ∈ ν} and kα are quantum numbers of species α, the subindex at vν has the same
meaning; the summation in (2) is carried out over all pairs of channels for which the number of
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particles in the initial or final channel does not exceed two (with an arbitrary number of particles
in the opposite channel); sβ(kβ) is a statistical weight of state kβ . Primes over sums and integrals
mean that the corresponding summation and integration is performed in a way which avoided
multiple accounts of the same states.

The method of introduction of slow (gas-dynamic) variables is unobvious for the systems for
which a number of slow variables exceeds the number of exact summational invariants. Therefore
the description of gases with internal degrees of freedom appears to be a challenge to the theory.
This problem can be solved by generalizing the definition of slow variables. They should be
determined not only by summational invariants, but also by approximate summational invariants
(ASI) ψi [1], that are defined by the following relationship

〈ψi, I (F )〉 ≤ O(ε), 〈ψ,ϕ〉 =
∑

α

∑

kα

∫
dvαψα (vα, kα)ϕα (vα, kα) . (3)

Here the angle brackets denote the scalar product. The corresponding set of slow variables is
determined as

Γi = 〈ψi, F 〉 . (4)

According to this definition variables Γi evolve over a long time scale. Equations for slow variables
are derived by multiplying the Eq. (1) by ASI and integration over velocities and summation over
quantum numbers.

Following our previous publication [1], where Fα = F qe
α + Φα, the first item does not depend

on either time or coordinates explicitly, i.e. it depends only on slow variables F qe
α = F qe

α ({Γi}).
For quasi-equilibrium distribution functions F qe

α we chose the function that maximizes the entropy

density for a fixed set of slow variables: F qe
α = exp

(
ln sα (kα)−

∑M
i=1 γiψiα (vα, kα)

)
. Here γi are

determined by the relationship (4), when F qe is substituted instead of F . Φα satisfies the equation

〈ψi,Φ〉 = 0. (5)

The advantage of an introduced quasi-equilibrium distribution function is that it normalizes the
procedure of introducing generalized thermodynamics (multi-temperature for instance).

Using the new variable Φ the Eq. (1) together with the corresponding equation for slow variables
can be transformed into the singularly perturbed set of equations:

ε
∂Φα

∂t
= JF qeα(F

qe +Φ)− εv · ∇Φα + ε
M∑

i=1

∂F qe
α

∂Γi
(∇ · 〈vψi, F

qe +Φ〉 − v · ∇Γi)

JΩ(F ) = I(F )−
M∑
i=1

∂Ω

∂Γi
〈ψi, I (F )〉 ,

(6)

∂Γi

∂t
=

1

ε
〈ψi, I (F

qe +Φ)〉 − ∇· 〈vψi, (F
qe +Φ)〉 . (7)

Equation (6) coinciding with that commonly used only where all ψi are exact summational invari-
ants (ESI). Additional terms in the modified collisional operator J are due to the slow evolution
of the system: relaxation of slow variables adiabatically impacts the collision process.

2.2 Gas-dynamic Equations

Considering a so-called ’weak’ non-equilibrium situation, where Φα function is assumed to be of
the order of ε, for the one-velocity model the following zero-order (Euler) gas-dynamic equations
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have been derived [1]. Following the Chapman-Enskog asymptotic procedure modified in [1] the
expressions for Φ and ∂Γ/∂t are represented as

Φ =
∞∑

s=0

εsΦ(s)
(
Γ,∇Γ, ...,∇s+1Γ

)
,

∂Γi

∂t
=

∞∑

s=0

εsB(s) (Γ,∇Γ, ...,∇sΓ) . (8)

Then for the zero order approximation we obtain

J ′
F qe(F qe)Φ(0) = −1

ε
JF qe (F qe) +

M∑

i=1

∂F qe

∂Γi
[v · ∇Γi −∇ · 〈vψi, F

qe〉] , (9)

∂Γi

∂t
=

1

ε
〈ψi, I (F

qe)〉+
〈
ψi, I

′ (F qe) Φ(0)
〉
−∇· 〈vψi, F

qe〉 . (10)

Here J ′ is the linearized modified collisional operator, that is determined via the linearized colli-
sional operator I ′ as

J ′
F qe(F qe)Φ(0) = I ′(F qe)Φ(0) −

M∑

i=1

∂F qe

∂Γi

〈
ψi, I

′(F qe)Φ(0)
〉
. (11)

As in traditional approaches, function Φ(0) can be represented as a linear combinations of terms,
proportional to gradients of gas-dynamic variables. Taking into account that only scalar part of
Φ(0) and the part which is proportional to mean velocity divergency, contributes the zero-order
gas-dynamic equations (10), these equations have the following form:

∂nα
∂t

+∇ · (unα) = Rα({Γ}), α = 1, ...N,

Rα = 〈ψnα
, I (F qe)〉+

〈
ψnα

, I ′ (F qe)
(
Φ

(0)
1 +Φ

(0)
2 ∇ · u

)〉
≡ Rqe

α +Rne
α +R

(0)
2α∇ · u,

(12)

∂ρu

∂t
+∇ · (ρuu) +∇ p = 0, p =

1

3

〈
mc2, F qe

〉
= n/γE , (13)

∂ΓE

∂t
+∇ · ((ΓE + p)u) = 0, (14)

∂Γi

∂t
+∇ · (uΓi) = Ri({Γ}), i = N + 5, ...,M,

Ri = 〈ψΓi
, I (F qe)〉+

〈
ψΓi

, I ′ (F qe)
(
Φ

(0)
1 +Φ

(0)
2 ∇ · u

)〉
≡ Rqe

i +Rne
i +R

(0)
2 i ∇ · u.

(15)

Here {Γ} = {Γnα
,Γp, Γ̃E ,Γai}. Rα are the reaction rates. The sum of the first two terms in the

RHS of Eq. (12), Rsh
α = Rqe

α + Rne
α , describe the kinetics of chemical reactions in spatially homo-

geneous systems, the last term, R
(sih)
α = R

(0)
2α∇ · u, describes the impact of spatial inhomogeneity.

Ri are the relaxation rates for Γi variables. Similarly, the sum of the first two terms in the RHS
of Eq. (15), Rsh

i = Rqe
i + Rne

i , describe the relaxation in spatially homogeneous systems, while

the last term R
(sih)
i = R

(0)
2 i ∇ · u arises in spatially inhomogeneous systems. Due to the similar

structure of all R-terms we will call them ”generalized relaxation rates” (GRR).
Euler equations derived within the presented approach differ from the traditional [10, 11] by

source terms: they consider additional summands Rne
α +R

(0)
2α∇·u and Rne

i +R
(0)
2 i ∇·u in Eqs. (12)

and (15) respectively, so that the non-equilibrium effects are taken into account within the zero-
order approximation. This is the consequence of not assuming the chemical reactions as being the
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perturbation in the collisional integral in Eq. (1). It was discussed in the previous papers [1, 2] in
detail.

It should be emphasized that in contrast to the traditional method our approach does not
include any assumptions other than this: the ratio ε = τfp/τgd is small, where τfp is the fast
process characteristic time and τgd is the gas-dynamic characteristic time. For example we don’t
use the expansion of the collisional integral over the Knudsen number; [9] being the starting point.
This means that the gas-dynamic equations derived in paper [1] are of the most general form.
Considered here ’weak’ non-equilibrium situation is the simplification of the result, obtained in [1],
but is still beyond the assumptions of the general approach [10, 11] and catches the majority of
non-equilibrium effects mentioned above.

In situations where corrections to the reaction rates are not small non-equilibrium effects dra-
matically impact the chemical kinetics of the reacting gas mixture [8]. This leads to the necessity of
the revision of the concept of ascertaining information on the reaction rates from the experiments.

3 Two-temperature approximation within cut-off harmonic oscillator
model

3.1 Gas-dynamic equations

Two-temperature approximation means that the vibrational quantum number of the selected vi-
brational mode, q1, is assumed to be the approximate summational invariant (only one vibration
mode is assumed for simplicity), thus ψV = qαδα1; it is additional to traditional Kronecker’s delta,
ψn1

(α) = δα,1, (which corresponds to species number densities), mixture momentum, ψp = mαvα,

and mixture total energy, ψE = e
(T )
α (vα) + e

(i)
α (kα), where e

(T )
α = mαv

2
α/2 and e

(int)
α are transla-

tional and internal energies of the molecules of sort α respectively, and kα are the quantum numbers
determining the internal energy of the molecule. Corresponding gas-dynamic variables defined ac-
cording to (4), are number densities of species, nα, the mean mixture momentum, Γp = p, the
mean total energy ΓE = ΓE(kin) + ΓE(tr) + ΓE(i) , (where ΓE(kin) = p2/2ρ, ΓE(tr) = 3n/2γE) and
quantum number density ΓV . It is connected with the usual mean quantum number q1 [14] by the
relationship ΓV = n1q1. Thus the quasi-equilibrium distribution function can be written as

F qe
α = nα

sα (kα)

Qα(γE , γV )
exp

[
−γE

(mα

2
(vα − u)

2
+ e(i)α (kα)

)
− γV qαδα,1

]
, (16)

where sα is a statistical weight, Qα a statistical sum and γE is connected with the gas temperature:
γE = 1/kBT . Parameters γV ({Γnα

}, Γ̃E ,ΓV ) and γE({Γnα
}, Γ̃E ,ΓV ) should be determined from

the relationships below

Γ̃E =
3

2

n

γE
+
∑

α

∑

kα

e(i)α (kα)X
qe
α,kα

, ΓV =

qm∑

q1=0

q1X
qe
1,q1

,

Xqe
1,q1

=
n1s1 (q1)

Q
(v)
1

exp
[
−γEe(v)1 (q1)− γV q1

]
,

(17)

where
∑

kα �=q1

∫
dvαFα = Xα,q1 is a vibrational population density and summation is aggregated

over all quantum numbers except q1; Γ̃E = ΓE(tr) + ΓE(i) ; e
(v)
1 (q1) is the energy of the corre-

sponding vibrational mode uncoupled with other degrees of freedom: e
(i)
1 (k1) = e

(v)
1 (q1) + e′1;

e′1 is the energy of the remaining internal degrees of freedom; Q(i) = Q
(v)
1 Q(i)′ and Q

(v)
1 =

∑
q1
exp

[
−γEe(v)1 (q1)− γV q1

]
is a vibrational statistical sum.
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For the harmonic oscillator e
(v)
1 (q1) = �ωe1(q1 + 1/2) and Q

(v)
1har ≈ e−γE�ωe1/2/

(
1− e−θV

)
,

where θV = γE�ωe+γV . Therefore (17) is reduced to the Boltzmann distribution with a vibrational
temperature that can be introduced by the relationship kBTV = �ωe1/θV .

For the above mentioned set of slow variables the zero-order gas-dynamic equations are as
follows: for Γnα

, Γp, ΓE they are (12), (13) and (14) respectively, while for ΓV the set of equations
(15) reduces to one equation:

∂ΓV

∂t
+∇ · (uΓV ) = RV (Γnα

,Γp, Γ̃E ,ΓV ),

RV = 〈ψV , I (F
qe)〉+

〈
ψV , I

′ (F qe)
(
Φ

(0)
1 +Φ

(0)
2 ∇ · u

)〉
≡Rqe

V +R
(0)
V 1 +R

(0)
V 2∇ · u.

(18)

3.2 Generalized Relaxation Rates

To calculate the spatially homogeneous part of GRR the scalar part of distribution functions, Φ
(0)
1α ,

should be calculated. For simplicity we consider the model within which the Maxwell-Boltzmann
distribution for translational and rotational degrees of freedom for all components is assumed.

Therefore the equation for Φ
(0)
1 , obtained from Eq. (9) by gathering scalar terms, can be reduced

to the equation for the ’fast’ part, X
(0)
1,q , of the vibrational population density X1,q of species 1,

as is done in [7], by representing the distribution function in factorized form Fα = F qe TR
α Xα,q,∑

jα

∫
dvαFα = Xα(qα), where F

qe TR
α is a translational-rotational part of a distribution function.

This means that the vibrational and rotational modes are assumed to be independent.

The vibrational collisional operator I
(V )
1 , that is the operator I1 from equation (1), integrated

over velocities v1 and summed over rotational quantum numbers j1, is represented as

I
(V )
1,q = I

(ch)
1,q + I

(V T )
1,q + I

(V V )
1,q , (19)

where superscripts ch, V T and V V correspond to chemical reactions (both unimolecular and
collisional) and to Vibration-Translation and Vibration-Vibration transitions respectively. For
one-quantum transitions probabilities of V T and V V transitions can be represented as Pp,q =
(δp,q+1 + δp,q−1)Pp,q, Q

s,l
p,q = (δp,q+1δl,s+1 + δp,q−1δl,s−1)Q

s,l
p,q, respectively; thus the relaxation

parts of the collisional operator becomes

I
(V T )
1,q = (1− δq,0) (Pq−1,qX1,q−1 − Pq,q−1X1,q)− (1− δq,qm) (Pq,q+1X1,q − Pq+1,qX1,q+1) ,

I
(V V )
1,q = (1− δq,0)

qm−1∑
l=0

(
Ql+1,l

q−1,qX1,q−1X1,l+1 −Ql,l+1
q,q−1X1,qX1,l

)

+(1− δq,qm)
qm−1∑
l=0

(
Ql,l+1

q+1,qX1,q+1X1,l −Ql+1,l
q,q+1X1,qX1,l+1

)

≡ (1− δq,0)Qq−1,q(X)X1,q−1 −Qq,q−1(X)X1,q − (1− δq,qm) (Qq,q+1(X)X1,q −Qq+1,q(X)X1,q+1) .
(20)

where qm is the highest vibrational level. Introducing the effective transition probabilities P̃i,j(X1) =
Pi,j +Qi,j(X1), the following expression for the vibrational collisional operator is derived:

I
(V )
1,q (X1) = −(1− δq,0)j̃q−1(X1)X1 + (1− δq,qm)j̃q(X1)X1 − δq,qm (Pd,qX1,q − Pr,qn3n4) ,

j̃q(X)Y = P̃q+1,q(X)Yq+1 − P̃q,q+1(X)Yq.

(21)
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Here Pd,q is the dissociation probability of the molecule in state q; Pr,q is the recombination
probability of the dissociation products to initial molecule in state q respectively, and subindexes
3 and 4 denote the dissociation products. Pd,q and Pr,q with q < qm assumed to be negligible. The

linearized collision operator I
(V )
1,q (X1) can be expressed as:

I
(V )′
1,q (Xqe

1 )X1,q = −(1− δq,0)j̃q−1(X
qe
1 )X1,q + (1− δq,qm)j̃q(X

qe
1 )X1,q

−(1− δq,0)j̃
′
q−1(X1)X

qe
1,q + (1− δq,qm)j̃ ′

q(X1)X
qe
1,q − δq,qmPd,qX1,q,

j̃ ′
q(X)Y = Qq+1,q(X)Yq+1 −Qq,q+1(X)Yq.

(22)

For the model under consideration, after integration over velocities and summation over quan-

tum numbers, scalar part of the Eq. (9) can be written for the new variable, X1 = Xqe
1 + εX

(0)
1 .

For this the following notations have been introduced: R1 = Rqe
1 + εR

(0)
1 , RV V = Rqe

V V + R
(0)
V V ,

RV C = Rqe
V C +R

(0)
V C , RV = Rqe

V + εR
(0)
V , where equations j̃q(X

qe
1 )X1 = j̃q(X

qe
1 )Xqe

1 + j̃q(X
qe
1 )X

(0)
1

and j̃ ′
q(X

(0)
1 )Xqe

1 = j̃ ′
q(X1)X

qe
1 are taken into account. The last equation follows from the rela-

tionships j̃ ′
q(X + Y )Z = j̃ ′

q(X)Z + j̃ ′
q(Y )Z and j̃ ′

q(X
qe
1 )Xqe

1 = 0. Here

Rqe
1 = 〈ψn1

, I (F qe
1 )〉 = 〈ψn1

, I(V ) (Xqe
1 )
〉′

= −
qm∑

q=0

(
Pd,qX

qe
1,q − Pr,qn3n4

)
,

R
(0)
1 =

〈
ψn1

, I ′ (F qe
1 )X

(0)
1

〉
=
〈
ψn1

, I(V )′ (Xqe
1 )X

(0)
1

〉′
= −

qm∑

q=0

Pd,qX
(0)
1,q ,

(23)

Rqe
V = 〈ψV , I (F

qe
1 )〉 = 〈ψV , I

(V ) (Xqe
1 )
〉′

= Rqe
V V +Rqe

V C ,

Rqe
V V = −

qm−1∑

q=0

j̃q(X
qe
1 )Xqe

1 , Rqe
V C = −

qm∑

q=0

q
(
Pd,qX

qe
1,q − Pr,qn3n4

)
,

R
(0)
V =

〈
ψV , I

′ (F qe
1 )F

(0)
1

〉
=
〈
ψV , I

(V )′ (Xqe
1 )X

(0)
1

〉′
= R

(0)
V V +R

(0)
V C ,

R
(0)
V V = −

qm−1∑

q=0

(
j̃q(X

qe
1 )X

(0)
1 + j̃ ′

q(X
(0)
1 )Xqe

1

)
, R

(0)
V C = −

qm∑

q=0

qPd,qX
(0)
1,q ,

(24)

where R
qe,(0)
V V contains only vibrational transition probabilities, while R

qe,(0)
V C contains reaction prob-

abilities; ψn1
and ψV are introduced at the beginning of the previous section. Prime sign over the

angular brackets in the last formulas mean that, unlike the previous definition, the corresponding
scalar products don’t contain the integration over velocities and summation over rotational quan-
tum numbers. Sums in expressions (23) and (24) reduce to their last terms, since we neglect all
dissociation and recombination processes except at the highest excitation level.

As a result, from Eq. (9) we obtain (dimensional variables are used here)

(1− δq,0)j̃q−1(X
qe
1 )X1 − (1− δq,qm)j̃q(X

qe
1 )X1 + (1− δq,0)j̃

′
q−1(X1)X

qe
1

−(1− δq,qm)j̃ ′
q(X1)X

qe
1 + δq,qm (Pd,qX1,q − Pr,qn3n4) + S(Xqe

1,q)R1 +
∂Xqe

1,q

∂ΓV
RV = 0.

(25)
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From expressions for R1 and RV it is seen that the reaction rates are determined not by the equi-
librium or quasi-equilibrium distribution, but by the quasi-stationary, Xqs

1 , which is the solution
of Eq. (25).

For solving Eq. (25) the procedure proposed is similar to what was applied in the one-
temperature case in paper [7]. The only difference is that additional variable, ΓV , needs the

additional relationship ΓV =

qm∑

q=0

qX1,q to be satisfied. Then we obtain the following expression for

the quasi-stationary distribution

Xqs
1,q = (αq/ã+Aq +R1Bq +RVBV q)X

qe
1,q, (26)

Aq = ˜̃cq(X
qs
1 )− αq

˜̃C(Xqs
1 )/ã, Bq = c̃q − αqC̃/ã, BV q = c̃V q − αqC̃V /ã,

αq =

q−1∏

m=0

(
1− j̃m(Xqe

1 )Xqe
1

P̃m+1,m (Xqe
1 )Xqe

1,m+1

)
, c̃q =

q−1∑

m=0

S(Θ(m))

P̃m+1,m(Xqe
1 )Xqe

1,m+1

,

c̃V q =

q−1∑

m=0

∂Θ(m)/∂ΓV

P̃m+1,m(Xqe
1 )Xqe

1,m+1

, ˜̃cq(X1) = −
q−1∑

m=0

j̃ ′
m(X1)X

qe
1

P̃m+1,m(Xqe
1 )Xqe

1,m+1

,

ã =

qm∑

n=0

αqX
qe
1,q/n1,

˜̃C =

qm∑

q=1

˜̃cqX
qe
1,q/n1, C̃ =

qm∑

q=1

c̃qX
qe
1,q/n1, C̃V =

qm∑

q=1

c̃V qX
qe
1,q/n1.

Further the following consequences of the detailed balance relationship are used: Pp,qX
B
1,p =

Pq,pX
B
1,q andQ

s,l
p,qX

B
1,pX

B
1,s = Ql,s

q,pX
B
1,qX

B
1,l, while for isoquantum transitions we also haveQs,l

p,qX
Tr
1,pX

Tr
1,s =

Ql,s
q,pX

Tr
1,qX

Tr
1,l , where Treanor distribution function XTr = Xqe is defined by (16) and XB =

XTr(γq = 0) is the Boltzmann distribution function. Thus we have j̃q(X
qe)Xqe = Pq+1,qX

qe
1,q+1(1−

eγV ) = Pq,q+1X
qe
1,q(e

−γV − 1).
Substituting expression (26) for X1,q into the expression for relaxation rate (24): RV = RV V +

qmR1, RV V (X1) = −
qm−1∑

q=0

(
j̃q(X

qe
1 )X1 + j̃′q(X1)X

qe
1

)
, and into expression for reaction rate (23),

we obtain the following equations for generalized relaxation rates

RV (1−RV V (BVX
qe
1 )) = RV V (αX

qe
1 )/ã+RV V (AX

qe
1 ) + (RV V (BX

qe
1 ) + qm)R1,

R1

(
1 + Pd,qmBqmX

qe
1,qm

)
= −Pd,qm

(
αqmX

qe
1,qm

/ã+AqmX
qe
1,qm

+RVBV qmX
qe
1,qm

)
+ Pr,qmn3n4.

(27)
Functions Aq, Bq and BV q are defined in Eq. (26). Such a simple relationship is a consequence of
the assumption that the dissociation takes place only from the highest vibrational level.

Using the first relationship from (27), expression (26) can be written as

Xqs
1,q =

(
Δ′ +A′

q +R1B
′
q

)
Xqe

1,q, Δ′
q = Δq +

BV qRV V (αX
qe
1 /ã)

1−RV V (BV )
, Δq =

αq

ã
,

A′
q = Aq +BV q

RV V (AX
qe
1 )

1−RV V (BVX
qe
1 )

, B′
q = Bq +BV q

RV V (BX
qe
1 ) + qm

1−RV V (BVX
qe
1 )

.

(28)

Finally, using the second relationship from (27), the scalar parts of the generalized relaxation
rates are represented as

R1 = −Pd,qm

(
Δ′

qm +A′
qm

)
Xqe

1,qm
− Pr,qmn3n4

1 + Pd,qmB
′
qmX

qe
1,qm

, (29)
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RV =
RV V (αX

qe
1 /ã) +RV V (AX

qe
1 ) + (RV V (BX

qe
1 ) + qm)R1

1−RV V (BVX
qe
1 )

. (30)

The expression for relaxation rate RV can be represented as a sum of two terms [14]: RV =

R
(r)
V + R

(ch)
V , one of which, R

(r)
V , is responsible for the quantum number density ΓV relaxation

due to energy exchange between vibrational and translational degrees of freedom, and R
(ch)
V is

responsible for ΓV relaxation due to chemical reactions. The last term being proportional to R1.

3.3 Cut-off Harmonic Oscillator Model

For the cut-off harmonic oscillator model, expressions (29) and (30) can be simplified. Using that

Pm+1,m = (m+ 1)P10, Ql,l+1
m+1,m = (l + 1)(m+ 1)Q01

10, (31)

and that

ΓV =

qm∑

q=0

qXqe
1,q = Xqe

1,0

(
e−θV

(
1− e−θV (qm+1)

)

(1− e−θV )
2 − (qm + 1)e−θV (qm+1)

1− e−θV

)

=
e−θV

1− e−θV

(
n1 − (qm + 1)Xqe

qm

)
, θV = γE�ωe + γV ,

(32)

we can calculate

j′m(X1)X
qe
1 = Q01

10(m+ 1)Xqe
1,m

(
qm−1∑

l=0

(l + 1)e−θV X1,l − ΓV

)

= Q01
10(m+ 1)Xqe

1,m

(
e−θV (ΓV − qmXqm + n1 −Xqm)− ΓV

)

= Q01
10(m+ 1)Xqe

1,m(qm + 1)e−θV
(
Xqe

1,qm
−X1,qm

)
.

Applying operators
∂

∂ΓV
and S to both parts of Eq. (32), and using that

∂nα
∂ΓV

=
∂ΓV

∂nα
= 0, we

obtain

S(θV ) = κ0
(
eθV − 1

)
ΓV /n

2
1,

∂θV
∂ΓV

= −κ0
(
eθV − 1

)
/n1,

κ0 =
[
1 + ΓV /n1 + (qm + 1− ΓV /n1)

((
eθV − 1

)
ΓV /n1 − 1

)]−1
.

(33)

Taking into account that

P̃m+1,m = (m+ 1)

(
P10 +Q01

10e
θV

qm−1∑

l=0

(l + 1)Xqe
1,l+1

)
= (m+ 1)

(
P10 +Q01

10e
θV ΓV

)
,

˜̃cq can be represented as

˜̃cq(X1) = − (qm + 1)
(
Xqe

1,qm
−X1,qm

)

eθV ΓV (βV + 1)
q, βV =

P10

Q01
10e

θV ΓV
.
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After some algebra one derives

Aq(X
qs
1 ) = − (qm + 1)

(1 + βV )eθV

(
Xqe

1,qm
−Xqs

1,qm

)( q

ΓV
− αq

1

Ã

)
,

RV V (Aq(X
qs
1 )Xqe

1 ) = − (Δ′
qm − 1 +A′

qm(Xqs
1 ) +B′

qm

)
AR

(1− (eθV − 1)ΓV /n1)P10n1
(1 + βV )eθV

,

AR = eγV − (eγV − 1)×
(
Γ′
V

ΓV
− Γ̃V

ã (1 + βV eγV )n1

)
.

(34)

where

Γ̃V =

qm∑

m=1

mαm
1 X

qe
1,m ≈ α1ΓV

(eθV − 1)2

(eθV − α1)2
, Γ′

V =

qm∑

q=1

q2Xqe
1,q ≈ ΓV

1− e−θV
,

αq =

(
βV e

γV + 1

βV + 1

)q

= αq
1 = 1 +O(βV ), ã =

(
1− e−θV

) (
1− (α1e

−θV
)qm+1

)

(
1− e−θV (qm+1)

)
(1− α1e−θV )

≈ 1− e−θV

1− α1e−θV
=

(1− e−θV )(1 + βV )

1− e−θV + βV (1− eγV −θV )
= 1 +O(βV ).

Here and further on the sign ”≈” is practiced to designate that approximations based on the
following relationships: e−θV (qm+1) 	 1 and 1/qs 	 1 are used. These expressions make it
possible to calculate A′

q(X
qs
1 ) according expression from (28):

A′
q(X

qs
1 ) =

(
Δ′

qm − 1 +A′
qm(Xqs

1 ) +R1B
′
qm

)
QqX

qe
1,qm

,

Qq =
(qm + 1)

(1 + βV )eθV

(
q

ΓV
− αq

1

ãn1
− ARP10

1−RV V (BVX
qe
1 )

BV q

)

≈ (qm + 1)ΓV

(1 + βV )(n1 + ΓV )

1 + βV (1 + 2ÃR)

1 + βV (1 + ÃR)

(
q

ΓV
− αq

1

ãn1

)
,

(35)

AR ≈ ÃR = 1 + (1− eγV )βV ãR, ãR =
(1 + (1− eγV )ΓV /n1)

1 + βV (1 + (1− eγV )ΓV /n1)

ΓV

n1
.

Solved for q = qm, this equation leads to the explicit expression for A′
qm(Xqs

1 )

A′
qm(Xqs

1 ) =
(
Δ′

qm − 1 +R1B
′
qm

) QqmX
qe
1,qm

1−QqmX
qe
1,qm

. (36)

Being substituted into equation (29), it leads to the renormalized expression for the reaction rate,
which is exact for the cut-off harmonic oscillator model, and to corresponding changes in the
expression for relaxation rate (30):

R1 = −Pqm,d(Δ
′
qm −QqmX

qe
1,qm

)Xqe
1,qm

− Pqm,rn3n4(1−QqmX
qe
1,qm

)

1 + (Pqm,dB′
qm −Qqm)Xqe

1,qm

. (37)
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This equation can be written as

R1 = Rqe
1 F − (Pd,qmΔ′′

qm +QqmPr,qmn3n4
)
Xqe

1,qm
F, Rqe

1 = − (Pd,qmX
qe
1,qm

− Pr,qmn3n4
)
,

F =
(
1 + (Pd,qmB

′
qm −Qqm)Xqe

1,qm

)−1
, Δ′′

qm = Δ′
qm − 1−QqmX

qe
1,qm

,

(38)
For RV we obtain

RV =
RV V (αX

qe
1 /ã) +RV V (A(X

qs
1 )Xqe

1 ) + (RV V (BX
qe
1 ) + qm)R1

1−RV V (BVX
qe
1 )

=

Rqe
V + (1− eγV )

(
1− Γ̃V

ã(1 + βV eγV )ΓV

)
P10ΓV − qmR

qe
1

1−RV V (BVX
qe
1 )

− (qm + 1)(Δ′
qm − 1)e−θV ARP10X

qe
1,qm

(1 + βV )(1−QqmX
qe)(1−RV V (BVX

qe
1 ))

+

(
RV V (BX

qe
1 ) + qm − (qm + 1)B′

qme
−θV ARP10X

qe
1,qm

(1 + βV )(1−QqmX
qe)

)
R1

1−RV V (BVX
qe
1 )

,

(39)

where

Rqe
V = Rqe

V V + qmR
qe
1 , Rqe

V V = RV V (X
qe
1 ) = −(1− eγV )P10ΓV ,

so that R1 and RV are represented as linear combinations of corresponding quasi-equilibrium rates,
and

Bqm ≈ Σqm

(1 + βV )Q01
10n

2
1

, Σq(θV ) =

q∑

m=1

eθV m − 1

m
, Σqm ∼ eθV (qm+1)

eθV − 1
ln qm,

Σ =

qm∑

q=1

Σq(θV )
Xqe

1,q

n1
∼ qm ln qm,

RV V (BX
qe
1 ) ≈ − βV

1 + βV

[
eγV qm − (eγV − 1)

(
ΓV

n1

(
Γ′
V

ΓV
− Γ̃V

ã (1 + βV eγV )n1

)

+

(
1 +

ΓV

n1

)(
Γ′′
V

n1
− ΣΓ̃V

ã (1 + βV eγV )n1

))]
, BV qm ≈ − qm/ΓV − αqm

1 /ãn1
(1 + βV )Q01

10 (n1 + ΓV )
,

Γ′′
V =

qm∑

q=1

qXqe
1,qΣq, RV V

(
αq
1X

qe
1,q

ã

)
=
P10 (e

γV − 1) Γ̃V

ã(1 + βV eγV )
, RV V (BVX

qe
1 ) ≈ − βV

1 + βV
ÃR.

Expressions (38) and (39) can be significantly simplified if smallness of the parameter βV is
used. Taking into account that RV V (BX

qe
1 ) ∼ RV V (BVX

qe
1 ) ∼ βV , we finally obtain (γV =
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�ωe (1/TV − 1/T ) /kB)

R1 = Rqe
1

(
1−QqmX

qe
1,qm

)
F0, RV = P10 (e

γV − 1) ΓV + qmR
qe
1 F0,

F0 =

(
1 + qm

(
Pd,qm

Q01
10ΓV

Σqm − (qm + 1)n1
n1 + ΓV

)
Xqe

1,qm

n1

)−1

.

(40)

Obtained expressions have a traditional form. Though it should be mentioned that under assump-
tion βV 	 1, the ratio of two-temperature non-equilibrium reaction rate constants of forward and
reverse reactions does not depend on the kinetic parameters (transition probabilities) and can be
expressed via the equilibrium constant (thermodynamic function). This is not the case for a non-
simplified expression (38), obtained for the arbitral value βV . The expression for RV has a common
structure: the sum of the relaxation term and the term responsible for the ’thermal’ effect caused
by dissociation-recombination reactions. The relaxation term is presented as containing factor
eγV − 1. The Landau-Teller equation, strictly speaking, is correct only for the harmonic oscillator
model, while the obtained expression is correct for arbitral models with one-quantum transitions.

4 Discussion

Considering the two-temperature approximation and the widely used cut-off harmonic oscillator
model, we have shown that generalized relaxation rates (reaction and relaxation rates) are the linear
combinations of the quasi-equilibrium ones (calculated with the quasi-equilibrium distribution
function). Coefficients in these expressions are the functions of the whole set of gas-dynamic
variables. This result is important for modeling the reacting gas flows, using existing data on rate
constants, since, as was shown in papers [2, 12], only equilibrium reaction rates can be calculated
using rate constant conception. The obtained result is also of high importance for developing the
methodology of getting data on chemical reaction rates from experiments.

Attention should be drawn to the fact that for high energies F qe is of the order of ε and
therefore F qe ≈ εΦ here. This high-energy range is responsible for reaction-rate values and thus
high-energy particles play an important role in the macroscopic description of the reacting gases,
in spite of their limited number. One of the advantages of our method is that it permits the correct
description of the contribution of high-energy particles into the gas-dynamic equations.

Here it should be mentioned that the method under development is valid only for the hard
potentials in Grad’s meaning [16]. As was found by Grad, the spectrum of the Boltzmann collision
operator for the case of soft potentials (power potentials V = V0(r0/r)

s with s < 4) dramatically
differing from the case of hard potentials (s ≥ 4). For hard potentials the collision operator
has five zero eigenvalues and continuous spectrum, which is separated from zero by the value
ν0 = ν(ξ = 0) = 2πβ02

αΓ (α), α = (2s − 4)/(s − 1), β0 is a multiplier in the total cross-section
that is independent of the relative velocity of colliding particles ξ = |v − v′| [16]. For ξ → ∞ we
have ν(ξ) → ∞, so that continuous spectra fills the zone ω ≤ −ν0 of the complex plane. Opposite
to this, for soft potentials continuous spectra fills the strip −ν0 ≤ ω < 0. It should be pointed
out that for high velocities the spectrum is infinitesimally close to zero (ν(ξ) → 0, while ξ → ∞).
Though the existence of the Boltzmann equation solution is proofed for the general case [16], the
asymptotic theory of obtaining the solution thereto has been built for the hard potentials only. So,
the approach to the quasi-equilibrium of the perturbed distribution can have non-exponential time
dependence. This can have far-reaching consequences for the corresponding gas-dynamic equations.
Corresponding integral equations of the Chapman-Enskog method are incorrect in the sense that
the reverse to the linearized collisional operator is unbounded. This leads to the results being very
sensitive to the chosen basis, when a traditional expansion of the kinetic equation over the full
set of orthogonal functions is used within the Chapman-Enskog method. Mentioning that plasma

c© 2015 European Society of Computational Methods in Sciences and Engineering (ESCMSE)



34 Yu.E. Gorbachev, E.G. Kolesnichenko

and nuclear matter are described by soft potentials (Coulomb and Yukawa), deriving gas-dynamic
equations for these cases is of great importance. Some aspects of this problem were considered
in [17]. There it was shown that the perturbation relaxation in spatially homogenous gas for soft

potentials obeys the t−αe−δtβ law, not the e−νt law as for hard potentials, where δ and β are
the functions of the potential parameter s. So the perturbation decay rate is slower for the soft
potentials. Conclusions have yet to be formed on how this fact impacts the gas-dynamic equation
structure and thus is one of the challenges of contemporary physical-chemical gas-dynamics.

In this connection one more result of the recent research should be mentioned. As it is discussed
in [18], there is an even more profound problem with applying classical statistical mechanics to
systems with so called long-range (LR) forces. These forces are described by the potentials which
decay with exponents smaller than the dimensionality of the embedding space: V = V0(r0/r)

s,
where s < d and d is the dimensionality of the space. For such systems traditional thermody-
namics fails and the velocity distribution in the stationary state will not have the characteristic
MaxwellBoltzmann form. As it is mentioned in [18], examples of such systems include galaxies and
globular clusters, colloids at interfaces as well as magnetically confined plasmas. We hope that
listed challenges will attract the attention of the experts in the physical-chemical gas dynamics
and related fields.

Further work on developing of our approach will consist in: (1) Choosing the suitable set
of polynomials, (2) Integral brackets calculation, (3) Tabulating of the generating functions for
generalized thermodynamics.
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