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Abstract: In this paper the mathematical model representing the dynamic of a Unmanned
Aerial Vehicle (UAV) is studied in order to analyse its behaviour. In order to stabilize the
entire system, linear Quadratic Regulator (LQR) control is used in such a way to set both
PD and PID controls in position variables. A set simulation is performed to carry out the
results for linear and non linear models. The LQR-PD and LQR-PID allow to move the
plant’s poles of UAV in the left half plane since without controller the systems is unstable.
Simulations, LQR-PD and LQR-PID controllers are designed by using Matlab/Simulink.
The simulations are performed to show how LQR tuned PD and PID controllers lead to
zero the error of the position along Z earth direction, stop the rotation of Unmanned Aerial
Vehicle (UAV) around body axes and stabilize the hexarotor.
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1 Introduction

A hexarotor is a kind of non-coaxial multi-rotor aircraft which can achieve vertical take-off and
landing (VTOL). The flight attitude control of the hexarotor can be achieved only by adjusting the
speed of the six rotors. Compared with the conventional rotor-type aircrafts, as no tail, hexarotors
have a more compact structure. Six rotors’ lifting force is more uniform than a single rotor, and thus
the flight attitude is more stable. The take-off requirements of hexarotor are lower than those of a
fixed-wing aircraft; moreover, it can hover and it has a better environmental adaptability [1]. As an
important representative of multi-rotor aircrafts, the hexarotor has became a new aviation research
frontier in the field of aviation and aircraft [2]. In the past few years, many research efforts have
been done in this field, such as Mesicopter [3], X4 Flyer project of Australian National University
[5], Draganflyer of Massachusetts Institute of Technology [6]. The movement of the hexarotor
is generated by the lifting force which is provided by the motor driven propellers [7], [10]. By
controlling the speed of the six rotors, vertical takeoff and landing, hovering and other movement
can be achieved. Thus, a robust control system based on an efficient mathematical model can
allow easily to maneuver and to manage the flight of the drone. The mathematical model derives



48 A. Alaimo, V. Artale, G. Barbaraci, C.L.R. Milazzo, C. Orlando and A. Ricciardello

from Newton-Euler equations [8] and it is linearised by means of the theory of small perturbations.
As control techniques concerns, several of them have been studied by different authors in order to
improve the performance of this kind of system. For example, in [4] a control strategy based on
backstepping procedure joint with Proportional Integrative Derivative (PID) technique is presented
for regulating the dynamics of a quadrotor. On the other hand, the controller introduced in [12]
stabilizes the attitude of a quadrotor by means of a compensation term and of a sliding mode term,
while the authors of [11] describe an integrator backstepping control on attitude that stabilizes the
drone around the equilibrium point.
The present paper compares two optimal control algorithms that combine a Proportional Derivative
(PD) and a Proportional Integrative Derivative (PID) controller with a Linear-Quadratic Regulator
(LQR). In detail, the first algorithm makes use of LQR in order to set PD parameters, as well as,
in the second algorithm LQR tuned PID controller. For sake of simplicity, from now on, they will
be referred to as LQR-PD and LQR-PID, respectively. Presented simulations show that the entire
non linear system is stabilized with respect to a fixed setpoint for desired variables of interest.
Moreover, the performance of the LQR-PD algorithm and of the LQR-PID one have been compared,
taking into account both the entire system and its linearisation around a hovering configuration.
Disturbances introduced on altitude and angular velocity are controlled assuring the stabilization
of the entire system.

2 Dynamic Model

Figure 1: Scheme of the hexacopter.

This section deals with the mathematical model governing the motion of an unmanned aerial
vehicle (UAV). This paper takes into account a hexacopter that is a hexagon shaped aerial vehicle,
equipped with three pairs of fixed pitch propellers rotating in opposite direction. The scheme of
the hexacopter is illustrated in Figure 1, where (xB , yB , zB) represents the mobile frame attached
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to the body and located on the centre of gravity. The earth fixed frame is in located on the earth
surface and the X, Y , and Z axes are directed to the North, East and down, respectively.

2.1 Non Linear Model

The Newton-Euler equations describe the complete dynamics of the hexacopter under the hypoth-
esis of ridig body. As the translational component concerns, the total force acting on the UAV is
the results of the total thrust [0, 0, T ]T and the gravitational force [0, 0, mg]T , in which m is
the mass and g is the gravitational acceleration. On the other hand, the equation that governs
the rotational component of the hexacopter dynamics states that the rate of change of the angular
momentum balances the difference between the external torque [τϕ, τθ, τψ]

T and the gyroscopic
forces Γ. Thus, the non linear dynamics of the hexacopter is here described in terms of Euler
angles ϕ, θ and ψ, i.e.  ẍ

ÿ
z̈

 =

 T (cos(ψ) sin(θ) cos(ϕ) + sin(ψ) sin(ϕ)) /m
T (sin(ψ) sin(θ) cos(θ)− cos(ψ) sin(θ)) /m

g − T cos(θ) cos(ϕ)/m

 (1)

 ṗ
q̇
ṙ

 =

 (Iyy − Izz) q r/Ixx
(Izz − Ixx) p r/Iyy
(Ixx − Iyy) p q/Izz

− Ir

 q/Ixx
−p/Iyy

0

 ωΓ +

 τϕ/Ixx
τθ/Iyy
τψ/Izz

 (2)

where Ixx, Iyy, Izz are the inertia moment with respect to x, y and z axes, respectively, Ir is the moment
of inertia with respect to the z axis of the six motor propeller assemblies, ωΓ = ω1−ω2+ω3−ω4+ω5−ω6

being ωi, i = 1, .., 6 the propeller angular velocities and [p, q, r]T is the angular rate vector depending on
the Euler angles through the following transformation, [13], p

q
r

 =

 1 0 − sin θ
0 cosϕ cos θ cosϕ
0 − sinϕ cos θ cosϕ

 ϕ̇

θ̇

ψ̇



3 LQR Control and Linearization Model

Linear quadratic regulator is one of the modern control technique widely applied due to its optimality for
linear time invariant system, such as

Ẋ = AX+BU (3)

where X is the state vector, U is the input one, A is the system matrix and B is the input matrix. The
LQR approach, in the case of full state feedback control, is based on the minimization of the quadratic
cost function

J = lim
t→+∞

∫ t

0

(
XT Q X+ αUT RU

)
(4)

in which Q and R can be chosen according to Bryson rule while α ∈ R is a parameter chosen by trial and
error approach.

In order to apply the LQR control, as in [9], the non linear system (1)-(2) is linearised around a hovering
configuration Xh, such that the angular velocity [p, q, r]T corresponds to Euler angle time derivative, i.e.

[p q r]T =
[
ϕ̇ θ̇ ψ̇

]T
.

Briefly, the dynamical system leads to
z̈ = g − T/m

ϕ̈ = τϕ/Ixx
θ̈ = τθ/Iyy
ψ̈ = τψ/Izz

(5)
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3.1 LQR-PD

The first algorithm introduced in this paper deals with a LQR control used to compute the parameters of
the proportional and derivative control on altitude and Euler angles. For such reason the state vector can

be written as X =
[
z ż ϕ θ ψ ϕ̇ θ̇ ψ̇

]T
, while the input vector is given by U = [T τϕ τθ τψ] , according with

the system (5). The system and input matrices A ∈ R8×8 and B ∈ R8×4 are sparse with

A1,2 = A3,6 = A4,7 = A5,8 = 1 (6)

B2,1 = −1/m; B6,2 = 1/Ixx; B7,3 = 1/Iyy; B8,4 = 1/Izz. (7)

Thus, the linearised dynamical system assumes the following vectorial notation

Ẋ = AX+BU+ e2g (8)

According with the LQR technique, the Input vector U depends on X through the coefficient matrix
K ∈ R4×8, that is

U = U0 −KX (9)

being U0 = [mg, 0, 0, 0]T the initial condition of inputs quantities while K is expressed as K = R−1BS
according to the solution of the Lurie-Riccati equation [14],

ATS+ SA− SBR1BTS+Q = 0 (10)

Note that,

KX = KP [z 0 ϕ θ ψ 0 0 0]T +KD

[
0 ż 0 0 0 ϕ̇ θ̇ ψ̇

]T
(11)

with KP, KD ∈ R4×8 suitable matrices. In such way, the entries of the gained K, depending on A, B, Q
and R are chosen as the optimal parameters of PD controller. So, the system (8) leads to

Ẋ = (A−BK)X+BU0 + e2g (12)

3.2 LQR-PID

The second algorithm investigated is based on LQR approach tuning a proportional, integrative and
derivative control on z, ϕ, θ and ψ. For this purpose, the state vector becomes

X̃ =

[∫ t

0

z(s)ds

∫ t

0

ϕ(s)ds

∫ t

0

θ(s)ds

∫ t

0

ψ(s)ds z ż ϕ θ ψ ϕ̇ θ̇ ψ̇

]T
while the matrices Ã ∈ R12×12 e B̃ ∈ R12×4 are still sparse with

Ã1,5 = Ã2,7 = Ã3,8 = Ã4,9 = Ã5,6 = Ã7,10 = Ã8,11 = Ã9,12 = 1

B̃6,1 = −1/m; B̃10,2 = 1/Ixx; B̃11,3 = 1/Iyy; B̃12,4 = 1/Izz.

Thus, under the assumption U = U0 − K̃X̃, the linear system (9) can be written as

˜̇X =
(
Ã− B̃K̃

)
X̃+ B̃U0 + e6g (13)

Instead, in this case,

K̃X̃ = K̃I [
∫ t
0
z(s)ds

∫ t
0
ϕ(s)ds

∫ t
0
θ(s)ds

∫ t
0
ψ(s)ds 0 0 0 0 0 0 0 0 ]T +

+K̃P [ 0 0 0 0 z 0 ϕ θ ψ 0 0 0 ]T +

+K̃D [ 0 0 0 0 0 ż 0 0 0 ϕ̇ θ̇ ψ̇ ]T

(14)
with appropriate K̃I, K̃P, K̃D ∈ R4×12. Here, again, the entries of K matrix indicate the coefficients of
the PID control.
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4 Numerical Results

In this section, the results obtained by the implementation of the two investigated algorithms are presented.
In details, the LQR-PD and LQR-PID approaches have been tested for the stabilization of the linear model
around the hovering position, and, then, they have been applied to the entire non linear system. Examples
show the reaction of both systems to impulse introduced on ż, ϕ̇, θ̇, ψ̇, taking into account a hexacopter
with mass m = 16.296 kg , Ixx = Iyy = 0.9458 kg m2, Izz = 1.7055 kg m2, Ir = 0.1380 kg m2.

4.1 LQR-PD Controller

In numerical tests concerning the LQR-PD control, the matrices Q and R, according with the Bryson rule,
are

Q = diag[0.5, 0.0001, 1.22, 1.22, 1.22, 0.0001, 0.0001, 0.0001]× 104

R = diag[0.5, 0.5, 0.5, 0.5]× 10−4,

with α = 1. Moreover, the initial condition is

X0 = Xh = [−1, 0, 0, 0, 0, 0, 0, 0] .

A disturbance on ż is introduced after 2 seconds, like an impulse with amplitude 10 m/s and pulse
width 0.1 s, as shown in Figure 2, where the altitude of the hexacopter under the influence of the assigned
disturbance are also reported for both the non-linear and linearised models. As expected, the LQR-PD
controller leads to the stabilization of the hexacopter around the hovering configuration.

Figure 2: Altitude and translational velocity along z direction, under the disturbance of ż obtained
by LQR-PD scheme.

Then, a similar disturbance, an impulse with amplitude 1 rad/s and pulse width 0.1 s, is applied to
ϕ̇, θ̇ and ψ̇. Figures 3, 4 and 5 illustrate the disturbance on the time derivative of the Euler angles that
affect the torques and the trend of the Euler angles that eventually tend to zero. In other words the drone
is stabilized around hovering altitude in less than 0.5 s while its rotations with respect to the body frame
nullifies with characteristic settling times less then 0.2 s.
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Figure 3: Roll angle ϕ and its time derivative ϕ̇ obtained by LQR-PD scheme.

Figure 4: Pitch angle θ and its time derivative θ̇ obtained by LQR-PD scheme.

4.2 LQR-PID Controller

On the other hand, if LQR-PID is taken into account,

Q = diag[10−8, 10−6, 10−6, 10−6, 5× 103, 0.5, 104, 104, 104, 0.5, 0.5, 0.5]

R keeps unchanged and α = 0.4150, chosen by trial and error approach. The dynamical system are solved
with initial condition

X̃0 = [0, 0, 0, 0, −1, 0, 0, 0, 0, 0, 0, 0] (15)
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Figure 5: Yaw angle ψ and its time derivative ψ̇ obtained by LQR-PD scheme.

As in the previous section, a disturbance on ż is introduced after 2 seconds, like an impulse with
amplitude 10 m/s and pulse width 0.1 s, as shown in Figure 6. Moreover the altitude of the hexacopter
under the influence of the assigned disturbance is presented in Figure 6, where, thanks to LQR-PID
controller, the stabilization of the hexacopter around the hovering configuration is shown. After 2 seconds,

Figure 6: Altitude and translational velocity along z direction, under the disturbance of ż obtained
by LQR-PID scheme.

an impulse with amplitude 1 rad/s and pulse width 0.1 s, is applied to ϕ̇, θ̇ and ψ̇ that perturbs the angular
velocities as presented in Figure 7, 8 and 9. However, the hovering attitude configuration is recovered in
less that 0.2 seconds, comparable with the LQR tuned PD scheme, but the damping process involved in
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the altitude stabilization appears longer than the PD one for the given parameters. Moreover, by taking
into account the variables maximum deviation with respect to the hovering initial state it stems that no
appreciable discrepancies are obtained in the position quantities evaluated through both PD and PID
control schemes. On the other hand, it can be concluded that the LQR-PD approach gives lower peaks of
the variables time rate with respect the LQR-PID ones.

Figure 7: Roll angle ϕ and its time derivative ϕ̇ obtained by LQR-PID scheme.

Figure 8: Pitch angle θ and its time derivative θ̇ obtained by LQR-PID scheme.
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Figure 9: Yaw angle ψ and its time derivative ψ̇ obtained by LQR-PID scheme.

5 Conclusion

In this paper the dynamical behaviour of a hexarotor has been analysed with the aim of stabilizing it
around the hovering configuration even in presence of external disturbances. For this reason the LQR
control has been implemented for tuning both PD and PID parameters. The obtained LQR-PD and LQR-
PID controllers have been tested by comparing the response to an impulse disturbances of the nonlinear
dynamical system with the response of the linearised one. No appreciable discrepancies have been evidenced
between the linear and nonlinear models for the given disturbances. Results show that the presented
methods stabilize the perturbed system around the equilibrium position, in about half a second.
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