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Abstract: In this paper we study the numerical treatment of Stochastic Differential Equa-
tions with additive noise and one dimensional Wiener process. We develop two, three and
four stage Runge-Kutta methods which attain deterministic order up to four and stochastic
order up to one and a half specially constructed for this class of problems. Numerical tests
and comparisons with other known methods in the solution of various problems justify our
effort, especially for our three stages methods.
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1 Introduction

Stochastic Differential Equations (SDEs) are used as models in a range of fields such as mechanics,
biology, chemistry, epidemiology, finance etc [1, 2]. One—Wiener process Stratonovich autonomous
SDE is given by

dy(t) = f(y(t))dt + g(y(t)) o dW (t), T > to, (1)
which in an integral form can written as,
1) = u(to) + [ floe)ds+ [ glu(s) oW (s). 2)

Just as in the deterministic differential equations any SDE can be written in an autonomous
form if we add another component which represents time. In this work we focus on a subclass of
(1) called SDEs with additive noise, where g is constant. In this case the Ito and Stratonovich
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forms of the SDE are the same. Such equations arise in many applications and in integral form
can be written as follows,

y(t) = ylto) + tf@@»w+3/nomV@x (3)

to

We are interested in the numerical treatment of (3) using Runge-Kutta (RK) methods. Pamela
Burrage [4] in her PhD thesis has introduced the usage of RK methods for the solution of general
problem (2). Motivated by her work and the work of Xanthos and Papageorgiou [5], we present
classes of RK methods especially constructed for SDEs with additive noise. In the following section
we discuss the numerical solution of SDEs by RK methods. In Section 3 we present classes of RK
methods methods specially constructed for SDEs with additive noise. Finally, in the last section
we form our numerical tests.

2 RK methods for SDEs

The general form of a s-stage stochastic Runge-Kutta method for the one Wiener process is given
by

ki:yn+ZZ(0)f ZZ“) (k;), i=1,2,---,s
Jj=

Ui =1n + D20 f k) + D 2 g(ky). (4)

Jj=1 Jj=1

f In (4) matrices Z(9) = (ZZ-(;-))),Z(I) = (ZZ(]D) and vectors z(0) = (zj(-o)),z(l) = (zj(-l)) have the
orm

P P
70 =pA, 2 = pha, 20 = 23(1)9172(1) = ZV(DGl

where A = (A;;) and BY = (B(l)) for ! =1,2,--- ,p are s x s real matrices and o = (¢;) and

A0 = J( )) are s x 1 row vectors with real elements and h is the step of the method. If A and B®) ’s
are strictly lower triangular, then the RK method is said to be explicit and its implementation is
straight forward. For simplifying purposes we assume that elements of Z(!) and z(!) are written as
linear combinations of the random variables 6;,l = 1,...,p. These variables are called stochastic
steps of the method and follow a distribution which arises from multiple stochastic integrals such
as Jy1y and Jyi oy (see Burrage [4]). Then, an explicit stochastic RK method has the form:

1—1 p i—1
ki =yn+ 0y Aiflk) +> O BY g(k))0n
i=1 =

=1 j=1

S S

Y1 = o + 0 Y i f(k) + YO g (k) (5)

j=1 1=1 j=1
and its coefficients can be represented by the following tableau:

A|BW ... |BW
N )
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In this work we assume that p < 2 with 6, = Jyy and 6, = % Pamela Burrage [4]
developed a bi-colored rooted tree theory for the elementary differentials, elementary weights and
order conditions for the derivation of stochastic RK methods by following the steps of deterministic
RK Butcher tree theory [3, 6]. The bi-colored rooted trees T}, have two kind of vertices. Black
vertices represent deterministic nodes and white vertices are used for stochastic nodes. Let ()
the empty tree, 7 the single deterministic vertex tree ® and o the single stochastic vertex tree
O . These are enough to generate the set of bi-colored trees. We define the rest of the trees

recursively so that [t1,ta, - , 1] € T, when the root of the new tree is a deterministic node and
{t1,t2, -+ ,tm} € Tp then the root of the new tree is a stochastic node and ty,ta,...,tym € T €.g.:
(7, [o]] {r.[o]}

The number of trees for the stochastic RK methods is considerably higher compared to the
number of trees for the deterministic RKs. For each stochastic RK method we can define two kinds
of orders. One is the deterministic order and the other is the strong stochastic order. There is a
one to one correspondence between the elementary differentials, the trees and the order conditions.
In such a tree we define its order (ord(t)) so that every deterministic node adds a unit and each
stochastic one half. The deterministic order conditions for a stochastic RK method are the same
as in the case of the pure deterministic RK methods [6]. For the general SDE we have to consider
all the T}, trees (See Figure 1). Burrage’s PhD thesis is an excellent source for the reader who
wants to go further into the subject.

Hereafter, for simplification reasons, we introduce the following notation:

b=BWe, c= Ae,d = BPe. (6)
For general problem (1) the following theorems hold.
Theorem 1 Numerical method (5) where p=1 and 0, = J{1}, has stochastic order 1 when the
following three order conditions hold:
1
(ae.ATe,yTh) = (1,1, 3) @

We cannot have methods of higher order when p = 1, so in order to achieve stochastic order
1.5 we have to take p = 2.

Iy

Theorem 2 Numerical method (5) where p = 2 with 01 = Jr1y and 0 =
order 1.5 when the following eighteen order conditions hold:

2L has stochastic

al(e,d,b) = (1,1,0)
1
V(I)T(ea da ba C) = (17 77(2)Tb7 53 1)
7(2)T(ea da C) = (0’ 07 _1)
AT @, BOb, @2, BOd) = (5, 2,
F@T 2, BWp, d?, BDd) = (=29 P Tbd, —y DT (B b+ BDd),0,0). (8)

2y Tpd, —AT(BRp + BD )
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Figure 1: The stochastic integrals (J), the elementary weights () and the elementary differentials
(F) fort € Ty : ord(t) < 1.5

3 RK methods for SDEs with additive noise

The number of order conditions reduces significantly when we solve the SDE with additive noise.
In such a case as many elementary differentials become zero and so, the corresponding order
conditions do not play any role in the numerical process. In such a case, the only trees needed for
a stochastic order 1.5 are the following:

® O

teTy:ord(t) <15
and the following theorems hold.

Theorem 3 Numerical method (5) where p = 1 and 01 = Jg1y, when solving problem (3) has
stochastic order 1 when the following two order conditions hold:

(a”e,vTe) = (1,1). (9)
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Again, we cannot have methods of higher order when p = 1, so in order to achieve stochastic
order 1.5 we have to take p = 2.

Theorem 4 Numerical method (5) where p = 2 with 61 = Jgy and 02 = J{%, when solving

problem (3) has stochastic order 1.5 when the following five order conditions hold:

(aTe,’y(l)Te,v(Q)Te, aTd,a’b) = (1,1,0,1,0). (10)

3.1 Methods with two stages

For two stage methods we can easily achieve deterministic order two. Moreover we can satisfy
the requirements of Theorem 3 and relation ac = % This equation minimizes the stochastic local
truncation error coefficient that corresponds to the only tree with stochastic order 1.5 which is
important for SDEs with additive noise i.e.

{o]

So, we can conclude to the following tree parameter family of methods:

0 0 0 0
Az 0 B 0
1 1
1- 2A21 2A21 ‘ mn l=m

Such methods can be used to accompany higher order methods in embedded pairs.

3.2 Methods with three stages

In the families of three stage methods we can have deterministic order three. Moreover by using
symbolic computations we can satisfy Theorem 4 order conditions resulting in a family of methods
with ten free parameters.

0 0 0/0 00[0 00
Ay 0 0[BY 0 0|B2 0 0
Az Az 0 |B3, Bi, 0|B3 B3, 0
a1 az as[ Y] v | 9E B

Six of these parameters are involved in the deterministic truncation error coefficients and the
relations ab? = %, ad? = %, a(bxd) = —%. These equations minimize the stochastic local truncation
error coefficient that corresponds to the only tree with stochastic order 2 which is important for
SDEs with additive noise i.e.

[0, 0]

If the above relations are satisfied, then the corresponding stochastic local truncation error
coefficient minimizes to its minimum value 1/400. We have used these six parameters for the mini-
mization of both deterministic and stochastic local truncation error coefficients and the remaining
four parameters are free to be chosen and we choose them to satisfy:

1
7(1)T(bac> = (

-1
1)
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7(2)T(d7 C) = (07 _1)'

We concluded to various methods but for our numerical tests we have chosen three of them.
The first one we refer to as ADS3D0O3S015a, the second as ADS3D0O3SO15b and the third as
ADS3D03S015¢. These attain norm of the deterministic principal local truncation error coefficient
0.043,0.04180 and 0.043 respectively. While the corresponding stochastic local truncation error
coefficient approximate 1/400 with an error of 9 x 1076, 0.00170 and 10~** respectively.

3.3 Methods with four stages

Analogously, by using symbolic computations, the families of methods with four stages can achieve
deterministic order four and satisfy exactly Theorem 4 order conditions resulting in a family of
methods with eighteen free parameters.

0O 0 0 00 O O O0}]0 0 O 0
A 0 0 O|BL O 0 O[B4 0 0 0
As1 Az 0 0|BLBL 0 0[B3 B2 0 0
Ag1 Agp Ays 0 |Bjy Biy Biz 0B B, Bz 0
o g a3 au| i v Y3 UL B 3 i

Twelve of these parameters are involved in the deterministic truncation error coefficients and
the relations ab®> = %,adQ = %,a(b xd) = —%. These equations minimize the stochastic local
truncation error coefficient that corresponds to the only tree with stochastic order 2 which is
important for SDEs with additive noise. If these relations are satisfied, then the corresponding
stochastic local truncation error coefficient achieves its minimum value 1/400. We have used these
twelve parameters for the minimization of both deterministic and stochastic local truncation error
coefficients concluding to various methods. For our numerical tests we choose one four stage
method which we refer to as ADS4D04S015. This method attains norm of the deterministic
principal local truncation error coeflicient 0.018 while the corresponding stochastic achieves 1/400
with an accuracy of forty six digits. As the remaining six parameters can be freely chosen we select

them to satisfy:

1 1

OT (e, p?) = (,1, =
Y (,C, ) (2’73)

yAT(d, e, d*) = (0, -1,0).

4 Numerical Tests

Using our methods ADS3D03S015a, ADS3D03S015b, ADS3D03S015¢ and ADS4D04S015 we
have solved various SDE problems with additive noise found in the literature. We have compared
their performance with two of Burrage’s methods [4] called F1 and E2. These four stage methods
are constructed for the solution of general SDEs and have stochastic order 1.5. As all the methods
do not have the same number of stages we solve with different stepsizes so that in each trajectory
all the methods perform the same number of function evaluations (nofeptr).

For our comparisons, as we do not know the analytical solution of the test problems, we consider
as "analytical” solution the numerical solution using strong order 1.5 Taylor method with a very
small stepsize (h = 27! or h = 2% in the third test problem). We perform M samples of
N trajectories of the ”analytical” X7 and numerical solution y% with common pseudo-random
numbers in each trajectory. We measure the error E(| X1 — y|) using the Monte Carlo method [2].
If we denote as Xr ; and yr ; the k-trajectory values of the j-sample of the ”analytical” and
the numerical solution at time 7" and calculate
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"analytical" solution ADS3D03S015a solution

15

15

Figure 2: Bonhoeffer-Van der Pol Oscillator solution for ¢ = 0.1

N
1
G N ; [ X7 k5 = Yk 5,

1 M
E(Xr —y’|) ~e= Vi > e,
=1

2
€

The trust region 100(1—a)% of error € has the form (e — Ae, e+ Ae) where Ae = t1_q p—11/ 55
The quantity t1_q,a—1 follows the t-Student distribution with M — 1 degrees of freedom. More
specifically, when M = 20 and @ = 0.1 then t;_4 -1 >~ 1.73.

4.1 A stochastic logistic equation

The first problem is a model of adoption of products by Mahajan and Wind [7]:
dX}! =c(R+L-X;)- (K — X;)dt + o o dW,

with R = 0.0094, K = 18700, L = 0.3478/K, 0 = 100, Xy, = 50 when it refers to a sale of room air
conditioners. The numerical results for ¢ € [0, 3] are presented in Table 1.
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"analytical" solution ADS3D03S015a solution

15¢

0.5f

-0.51

Figure 3: Bonhoeffer-Van der Pol Oscillator solution for o =1

Table 1: E(| X7 — y|) for the stochastic logistic equation
1152 576 288

no feptr 144

ADS3D03S015a

7.0611 £ 0.0577

7.1473 £ 0.1088

7.4392 + 0.12942

9.8705 £ 0.2910

ADS3D0O35015b

7.0613 £ 0.0577

7.1478 £ 0.1089

7.4418 £0.1294

9.8905 £ 0.2914

ADS3D03S015¢

7.0611 £ 0.0577

7.1473 £0.1089

7.4401 £ 0.1662

9.8808 £ 0.2912

ADS4D0O35S015

7.0774 £ 0.0562

7.1915 £ 0.1519

8.0048 £ 0.1662

12.6637 £ 0.2427

El

7.0721 £ 0.0559

7.1782 £ 0.1508

7.9421 £ 0.1622

12.3302 £ 0.2398

E2

7.0717 £ 0.0563

7.1822 £ 0.1521

8.0071 £ 0.1674

12.7511 £ 0.2429

4.2 An Experimental Psychology model

The second equation is a model by Schéner [1] where the stochastic part is included to describe
fluctuations to the experimental data:

dX; = —(asinX; + 2bsin2Xy)dt + o o dWy

with a = 1,b = 1,0 = 10,Xy = 0 and ¢ € [0,3]. For this set of parameters the results of the
numerical experiments are presented in Table 2.
4.3 Bonhoeffer-Van der Pol Oscillator

Finally, we solve a 2-dimensional simplification of a 4-dimensional ode system introduced by
Hodgkin and Huxley [2] to model the firing of a single neuron. The effects of membrane im-
perfections and of the firing if nearby neurons can be simulated by the inclusion of the additive

© 2009 European Society of Computational Methods in Sciences and Engineering (ESCMSE)
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Table 2: E(| Xy — y|) for the Experimental Psychology model

nofeptr

1152

576

288

144

ADS3D03S015a

0.2181 £ 0.0071

0.3131 £ 0.0102

0.4385 £ 0.0135

0.6033 £ 0.0159

ADS3D0O35015b

0.2208 £ 0.0069

0.3109 +£ 0.0096

0.4348 £0.0147

0.5747 £0.0184

ADS3D03S015¢

0.2142 £ 0.0070

0.3097 £ 0.0096

0.4327 £ 0.0118

0.6058 £ 0.0151

ADS4D045015

0.3054 £ 0.0107

0.4567 £ 0.0117

0.6346 £+ 0.0247

0.8637 £ 0.0308

El

0.2930 £ 0.0077

0.4703 £ 0.0195

0.6626 = 0.0196

0.8161 £ 0.0271

E2

0.2685 =+ 0.0069

0.4197 £ 0.0154

0.6081 £ 0.0184

0.8333 £ 0.0202

179

noise term concluding to the following system:

1
dX} = (X} + X2 - §(th)3 + z)dt + 0 0 dW,

1
dX? = —=(X} +bX}? —a)dt
C

with a = 0.7, =0.8,¢c = 3.0,z = —0.34, and X, =[-1.9,1.2].

We solve this demanding problem in the interval ¢ € [0,60], at a cost of 23049 nofeptr, for
various values of the additive noise parameter ¢ and give the results in Table 3. Moreover two
trajectories of the "analytical” solution and a solution with one of our methods is presented in
Figures 2 and 3.

Table 3: E(| X7 — y|) for various values of o for neuron model
o 0.1 0.5 1

ADS3D035015a

0.1437 £ 0.0185

0.1016 £ 0.0263

0.0977 £+ 0.0261

ADS3D03S015b

0.1436 £+ 0.0186

0.1014 £ 0.0258

0.0993 £ 0.0266

ADS3DO03S015¢

0.1436 £ 0.0185

0.1026 £ 0.0268

0.0976 £ 0.0261

ADS4D045015

0.1809 £ 0.0302

0.1110 £ 0.0283

0.1139 £ 0.0254

El

0.1809 £ 0.0214

0.1127 £ 0.0283

0.1141 £ 0.0236

E2

0.1823 £ 0.0290

0.1314 £ 0.0268

0.1643 £ 0.0202

4.4 Remarks

As we have mentioned, our three stage methods, which are specially constructed for SDEs with
additive noise, achieve stochastic order 1.5 just as the four stage methods do, at a lower cost
per step. Our experiments showed that these methods outperformed all the four stage methods.
Moreover, the loss in the deterministic order does not seem to affect their performance significantly.
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