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solution of Cauchy singular integral equations. Uniform error bounds of the approximate
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1 Introduction

In [14] ÷ [18] de Villiers and Rohwer introduce and analyze an arbitrary order nodal spline approx-
imation operator with the properties of locality, interpolation at a subsequence of the spline knots
and optimal order polynomial reproduction. Fundamental existence and uniqueness theorems for
spline interpolation by means of additional knots, including the nodal spline case, are proved in
[9].

Let I = [a, b] be a given finite interval of the real line R and let m ≥ 3 be the spline order. For
n ≥ m− 1, we define a partition Πn of I by

Πn : a = τ0 < τ1 < ... < τn = b ,

generally called “primary partition”.

1Published electronically October 15, 2008
2Corresponding author. E-mail: catterina.dagnino@unito.it
3E-mail: vittoria.demichelis@unito.it
4E-mail: paola.lamberti@unito.it



212 C. Dagnino, V. Demichelis, P. Lamberti

We insert m − 2 distinct points throughout (τν , τν+1), ν = 0, 1, ..., n − 1, obtaining the spline
knots partition

Xn : a = x0 < x1 < ... < x(m−1)n = b,

where x(m−1)i = τi, i = 0, 1, ..., n.
Setting

Dn = max
0≤k,j≤n−1

|k−j|=1

τk+1 − τk
τj+1 − τj

,

we say that the sequence of partitions {Πn;n = m − 1,m, ...} is locally uniform (l.u.) if there
exists a constant D ≥ 1 such that Dn ≤ D for all n. We denote by hn the norm of Πn, i.e.
hn = max0≤i≤n−1(τi+1 − τi).

Now, after introducing two integers

i0 =





1
2 (m+ 1), m odd

1
2m+ 1, m even

and i1 = (m+ 1)− i0

and two integer functions

pν =





0, ν = 0, 1, ..., i1 − 2,
ν − i1 + 1, ν = i1 − 1, ..., n− i0,
n− (m− 1), ν = n− i0 + 1, ..., n− 1,

qν =





m− 1, ν = 0, 1, ..., i1 − 2,
ν + i0, ν = i1 − 1, ..., n− i0,
n, ν = n− i0 + 1, ..., n− 1,

we consider the set {w̃i(x); i = 0, 1, ..., n} of functions defined as follows:

w̃i(x) =





li(x), x ∈ [τ0, τi1−1], i ≤ m− 1,
si(x), x ∈ (τi1−1, τn−i0+1), n ≥ m,
li(x), x ∈ [τn−i0+1, τn], i ≥ n− (m− 1),

where

li(x) =

m−1∏

k=0

k 6=i

x− τk
τi − τk

,

li(x) =

m−1∏

k=0

k 6=n−i

x− τn−k
τi − τn−k

,

si(x) =

m−2∑

r=0

j1∑

j=j0

σi,r,jB(m−1)(i+j)+r(x),

with j0 = max{−i0, i1 − 2 − i}, j1 = min{−i0 + m − 1, n − i0 − i}. The coefficients σi,r,j are
given in [16] and the B-splines sequence is written in terms of the set {Bi : i = (m − 1)(i1 − 2),
(m− 1)(i1 − 2) + 1, ..., (m− 1)(n− i0 + 1)} of normalized B-splines of order m defined on the set
of knots Xn.

The following locality property holds:

si(x) = 0, x 6∈ [τi−i0 , τi+i1 ].
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Each w̃i(x) is nodal with respect to Πn, in the sense that

w̃i(τj) = δi,j , i, j = 0, 1, ..., n .

Therefore, being det[w̃i(τj)] 6= 0, the functions w̃i(x), i = 0, 1, ..., n, are linearly independent. Let
SΠn = span{w̃i(x); i = 0, 1, ..., n}. For all f ∈ B(I), where B(I) is the set of real-valued functions
on I, we consider the nodal spline operator Wn : B(I)→ SΠn , so defined

Wnf(x) =

n∑

i=0

f(τi)w̃i(x), x ∈ I. (1)

By locality property, for 0 ≤ ν < n, we can write:

Wnf(x) =

qν∑

i=pν

f(τi)w̃i(x), x ∈ [τν , τν+1] .

In [16, 17] it is constructively proved that the following properties hold:

Wnf ∈ Cm−2(I), (2)

Wnf(τi) = f(τi), i = 0, 1, ..., n, (3)

Wnp = p, p ∈ Pm, (4)

where Pm denotes the set of polynomials of order m (degree ≤ m− 1).
The following approximation error estimate is derived in [18], for f ∈ C(I):

‖f −Wnf‖∞ ≤ ‖Wn‖ ω(f,mhn), (5)

where

‖Wn‖ = max
0≤j≤n−1

max
τj≤x≤τj+1

qj∑

i=pj

|w̃i(x)| ≤ (m+ 1)[

m−1∑

λ=1

Dλ
n]m−1

and ω(f, δ) denotes the modulus of continuity on I, i.e.

ω(f, δ) = max
x1,x2∈I
|x1−x2|≤δ

|f(x1)− f(x2)|.

Applications to the construction of integration rules for weakly and strongly singular integrals,
including Cauchy principal value (CPV) integrals in one or two dimensions, are explored also by
the authors [3, 4], [6] ÷ [8], [11] ÷ [13], [19, 20, 25]. Moreover, a nodal spline collocation method
is proposed and analyzed in [5], for producing the numerical solution of weakly singular Volterra
integral equations of the second kind.

In this paper we present a collocation method, based on optimal nodal spline approximation,
for solving the following Cauchy singular integral equation (CSIE), with constant coefficients:

awα,β(x)f(x) +
b

π

∫ 1

−1

− wα,β(t)f(t)

t− x dt+

∫ 1

−1

wα,β(t)k(x, t)f(t)dt = g(x), −1 < x < 1, (6)

where the symbol
∫
− means that the integral is defined in the CPV sense, wα,β is the Jacobi weight

function
wα,β(t) = (1− t)α(1 + t)β , α, β > −1,
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and k(x, t) is a Fredholm kernel.
We assume that f is Hölder continuous on [−1, 1], i.e. f ∈ Hρ(C), where

Hρ(C) = {g : g ∈ C[−1, 1], ω(g, δ) ≤ Cδρ, 0 < ρ ≤ 1, for some C > 0}.

The above CSIE arises in several areas as aerodynamics, elasticity, fluid and fracture mechanics.
The general theory for equations of the form (6) is well developed in [23].

In particular, we consider CSIEs with index ν = −(α+ β) ∈ {0, 1} ([2, 26]). If ν = 0 , then (6)
has a unique solution; if ν = 1, then an extra condition must be supplied. This condition usually
takes the form

∫ 1

−1

wα,β(t)f(t)dt = c, c ∈ R. (7)

Our method is obtained by replacing the unknown function f by Wnf in (6). If ν = 1 , we also
replace f by the nodal spline in (7).

Then, we choose a set of collocation points {tk; k = 0, 1, . . . , n − ν}, different from the set Xn

of knots, and obtain a system of linear equations for the unknown values f εi ≈ f(τi), i = 0, ..., n.
Once we have the approximations f εi to f(τi), we can insert them into (1) and evaluate our

approximation to f for any x ∈ (−1, 1).
The proposed procedure has a great flexibility: indeed, we can choose the spline space SΠn ,

including the possibility of using the same primary knots with different values of m, and the
collocation points set {tk}.

Assuming that

hn → 0 as n→∞ (8)

and f ∈ Hρ(C), the CPV integrals of Wnf , based on locally uniform partitions, converge uniformly,
with respect to x ∈ (−1, 1), to the CPV integral of f [11]. This is a necessary condition to ensure
the approximate solutions of (6) converge uniformly to the true solution [26] and allows to provide
a uniform bound for the error of the approximate solution.

We can remark that other spline approximation operators as, for instance, quasi-interpolatory
splines, reproducing polynomials up to the order of the spline, are suggested in [26] for the numerical
solution of CSIEs. Nevertheless, in general, the uniform convergence of CPV integrals of such
splines to the CPV integral of f ∈ Hρ(C) cannot be proved. In order to overcome this drawback,
some authors propose the evaluation of CPV integrals by other spline techniques, as either the
singularity subtraction [27] or the quasi-interpolatory spline modification [10]. In [22] the Nyström
method for (6), based on projector-splines, is used and the integrals are evaluated by subtracting
the singularity. In [1] a Nyström type method, based on modified quasi-interpolatory splines, is
introduced and the related algorithm is realized.

The method here proposed allows to directly integrate the splines, ensuring the uniform con-
vergence for f ∈ Hρ(C).

2 The spline collocation method

In this section we need the following notations:

Hf(x) = awα,β(x)f(x) +
b

π

∫ 1

−1

− wα,β(t)f(t)

t− x dt, (9)
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Kf(x) =

∫ 1

−1

wα,β(t)k(x, t)f(t)dt. (10)

Rewriting equation (6), with the above notations, leads to

Hf +Kf = g.

First, we approximate f by the nodal spline Wnf defined in (1) and we form the residue equation

rn(x) = (HWnf +KWnf − g)(x) =

n∑

i=0

f(τi)(Hw̃i +Kw̃i)(x)− g(x). (11)

Then, we choose a set {tk; k = 0, . . . , n− ν} of collocation points in (−1, 1), different from the
set Xn of knots.

Setting rn(tk) = 0, by (11) we obtain a system of linear equations for the unknowns f εi ≈
f(τi), i = 0, 1, . . . , n .

For ν = 1, the system will have n equations in the n + 1 unknowns f ε0 , f
ε
1 , . . . , f

ε
n, so that it

must be augmented by the following equation, obtained approximating f by Wnf in (7):

n∑

i=0

f εi

∫ 1

−1

wα,β(t)w̃i(t)dt = c.

For ν = 0, we have n+ 1 equations in n+ 1 unknowns.
We write the collocation system in the form:

Af ε = g , (12)

where:
f ε = [f ε0 , f

ε
1 , . . . , f

ε
n]T ,

g =

{
[g(t0), g(t1), . . . , g(tn−1), c]T , ν = 1,

[g(t0), g(t1), . . . , g(tn)]T , ν = 0.

In order to define the collocation matrix entries, we introduce the following notations:

µα,βi (x) =

∫ 1

−1

− wα,β(t)w̃i(t)

t− x dt, x ∈ (−1, 1),

µα,βi (x) = Kw̃i(x) ,

λα,βi =

∫ 1

−1

wα,β(t)w̃i(t)dt, i = 0, 1, ..., n.

The elements {ak,i}nk,i=0 of the matrix A in (12) can be expressed by

ak,i = awα,β(tk)w̃i(tk) +
b

π
µα,βi (tk) + µα,βi (tk), k = 0, ..., n− ν, i = 0, ..., n.

In the case ν = 1 the elements of the (n+ 1)− th row are an,i = λα,βi , i = 0, 1, ..., n.

Therefore, we obtain the matrix entry ak,i by evaluating µα,βi (tk) as well as µα,βi (tk) and λα,βi .
Closed form expressions for such integrals can be derived for special choices of α, β and k(x, t)
[4, 25]. When closed form expressions do not exist, a numerical method must be used [21, 27].
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Since the number of linear equations is equal to the number of unknown values, we can solve
the system (12) for these values, provided the matrix A is nonsingular, which we assume.

Once we have the approximations f εi to f(τi), we can insert them into (1), obtaining:

Wnf
ε(x) =

n∑

i=0

f εi w̃i(x)

and evaluate our approximation Wnf
ε to f for any x ∈ (−1, 1).

3 Error estimates

The vector f = [f(τ0), f(τ1), ..., f(τn)]T of the true values satisfies

Af = g − e, (13)

where: e = [e0, e1, ..., en]T is the sum of error vectors in the spline interpolation and in the numerical
integration, induced by the use of nodal splines, i.e.

ek = HRnf(tk) +KRnf(tk) , k = 0, 1, ..., n− ν,

with H and K defined in (9) and (10), respectively, and Rnf = f − Wnf . If ν = 1, the last

component of e is en =
∫ 1

−1
wα,β(t)Rnf(t)dt.

Hence, from (12) and (13), we obtain the following error estimate for the spline method:

‖f − f ε‖∞ ≤ ‖A−1‖∞‖e‖∞. (14)

In order to bound ‖e‖∞, we prove the following theorem.

Theorem 1 For f ∈ Hρ(C), let us consider a sequence {Wnf ∈ SΠn} of nodal spline approxima-
tions. Assume that the sequence {Πn} of primary partitions is l.u. and (8) holds.

If ρ+ γ > 0, where γ = min (α, β), then

HRnf(x) +KRnf(x) =

{
O(hρn| log hn|) , γ ≥ 0
O(hρ+γn ), γ < 0 ,

(15)

where, the O-term holds uniformly with respect to x ∈ (−1, 1).

Proof. By Theorem 3.1 in [3], we know that

KRnf(x) = O(hρn). (16)

Now, we estimate HRnf . By (3), we can write

Rnf(−1) = Rnf(1) = 0. (17)

Taking into account the error estimate (5), since f ∈ Hρ(C) and {Πn} is l.u., there results

max
x∈[−1,1]

|Rnf(x)| ≤ C̄hρn , C̄ > 0. (18)

Moreover, considering that for any u, v ∈ [−1, 1],

|Rnf(u)−Rnf(v)| ≤ |f(u)− f(v)|+ |Wnf(u)−Wnf(v)|
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and Wnf is at least C1[−1, 1] in virtue of (2), it follows

Rnf ∈ Hρ(C1), for some C1 > 0. (19)

Conditions (17), (18) and (19) ensure that the CPV integrals of {Wnf} converge to the CPV
integral of f uniformly in (−1, 1) [24] and the following estimates hold for ρ+ γ > 0 [12]:

∫ 1

−1

− wα,β(t)Rnf(t)

t− x dt =

{
O(hρn| log hn|) , γ ≥ 0
O(hρ+γn ), γ < 0 ,

(20)

where, the O-term holds uniformly with respect to x ∈ (−1, 1). The result (15) follows from (5),
(16) and (20).

By Theorem 1 and (14), since we assume that the collocation matrix A is non singular, we can
conclude

‖f − f ε‖∞ ≤ C2h
ρ+γ
n , 0 < C2 <∞.

We remark that we consider f Hölder continuous on [−1, 1], because this is a general interesting
case for the applications. However, if f is smoother, for instance f ∈ Cs[−1, 1], 1 ≤ s < m − 1
and its derivative of order s is Hölder continuous, then it is easy to show that ‖f −f ε‖∞ is at least

O(hs−1+ρ+γ
n ).

4 Numerical results

The above proposed spline method has been applied to solve a number of integral equations,
including those here presented, for which we use uniform sets Xn of knots and several choices of
collocation points different from Xn.

We denote by:

• N = n+ 1: both the primary knots number and the collocation matrix dimension;

• m: the spline order;

• En: the uniform norm of the error |f(t)−Wnf
ε(t)| computed by using a 101 uniform mesh

of evaluation points in (−1, 1);

• EΠn = max0≤i≤n|f(τi)−Wnf
ε(τi)| ;

• CN : condition number of the collocation matrix A.

Example 1

We consider the equation:

1

π

∫ 1

−1

− (1− t2)−
1
2
f(t)

t− x dt =
2

π

[
1 + x2(1− x2)−

1
2 log

∣∣∣∣∣
(1− x2)

1
2 − x+ 1

(1− x2)
1
2 + x− 1

∣∣∣∣∣

]
, −1 < x < 1,

which has the solution f(t) = t|t|, if the additional condition
∫ 1

−1
f(t)√
1−t2 dt = 0 is imposed.

Table 1 shows the rate of convergence of the method, with quadratic nodal splines (m = 3).
The obtained results confirm the convergence properties proved in section 2. Moreover, an estimate
for the collocation system condition numbers is reported for increasing values of N .
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Table 1: Example 1
N m En EΠn CN

6 3 7.47(-03) 2.13(-03) 3.77
12 3 1.53(-03) 4.43(-04) 7.71
36 3 1.39(-04) 4.38(-05) 23.53
82 3 2.86(-05) 8.17(-06) 53.87

Example 2

The second equation is

1

π

∫ 1

−1

− (1− t2)−
1
2
f(t)

t− x dt = 4x2 − 1, −1 < x < 1.

It has the unique solution f(t) = 4t3 − 3t, with the additional condition
∫ 1

−1
f(t)√
1−t2 dt = 0.

To this problem we apply the collocation method based on quadratic and cubic nodal splines.
Table 2 provides the corresponding results.

Table 2: Example 2
N m En, EΠn CN

8 3 3.67(-02) 5.08
19 3 2.06(-03) 12.32
39 3 2.11(-04) 25.51
82 3 2.08(-05) 53.87
8 4 2.60(-14) 57.27

We remark that the exact solution of the equation in Example 2 belongs to P4 and, since (4)
holds, the order of error is 10−14 in the case m = 4.

To summarize, in solving (6) by the proposed method, there are various possibilities for the
choice of the spline order, of the spline knots set and of the collocation points. These features
enable us to experiment with different spline spaces and different choices of sets {tk}. Indeed,
several numerical experiments can be done to evaluate the solution of (6) and get a feel for what
is a good choice among the many possibilities.
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