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Abstract: Algorithm-based computers are programmed, i.e., there must be a set of rules which, a 
priori, characterize the calculation that is implemented by the computer. Neural computation, based 
on neural networks, solve problems by learning, they absorb experience, and modify their internal 
structure in order to accomplish a given task. In the learning process, the available information is 
usually divided into two categories, examples of function values or training data and prior 
information, e.g. smoothness constraint, or other particular properties [3]. From the learning point of 
view, the approximation of a function is equivalent with the learning problem of a neural network. In 
this paper we want to show the capabilities of a neural network to approximate arbitrary continuous 
functions and to build a practical neural network to approximate a continuous function. We have 
made some experiments in order to confirm the theoretical results. 
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1. Introduction 
 
Neural computing represents an alternative computational paradigm to the algorithmic one (based on a 
programmed instruction sequence). Neural computation is inspired by knowledge from neuroscience, 
though it does not try to be biologically realistic in details [12].  
 
Today's research in neural computation is largely motivated by the possibility of constructing artificial 
neural networks. Artificial neural networks are simplified models of the biological neural networks. 
 
An artificial neuron has several inputs, n, say. Each input xi arrives from another neuron (dendrites). 
Each input has a connection strength associated with it. For a given neuron, call it neuron j, the 
connection strength on the input coming from neuron i is written wji. An activation function f will be 
will be applied to the sum of weighted inputs and an output yj will be generated (axon). The artificial 
neuron performs the following operations: 

•  a summation of weighted inputs:  ∑ ⋅
i

iji xw  (1) 

•  a non-linear thresholding of this sum: ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⋅∑

i
iji xwf  (2)  
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•  the output of this neuron, j, is: ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⋅= ∑

i
jjij xwfy  (3) 

We will deal with neural networks organized in layers, where the information is transmitted forward 
from the first layer until the last layer. These types of feed forward multilayer neural networks are 
called MLP (Multi Layer Perceptrons [6]).  
 
MLP learn in a supervised manner [4]. Learning represents the process where the input patterns are 
presented repeatedly and the weights are adjusted according to a learning algorithm, which in this 
supervised case, takes into consideration the quantitative difference between the target output and the 
current output.  The supervised learning of the neural network uses a training set has the following 
form: 
 ( ){ }NiT ii ,,2,1, …== zx  (4) 
zi ∈ Rm is the m-dimensional target vector that is provided by a trainer. N ∈N is a constant that 
represents the number of samples used for training. Usually the training set T is obtained from a 
probabilistic known distribution or from another active procedure [6].  
 
Using the probabilistic distribution the trainer selects a certain input vector xi, and provides the 
appropriate target vector zi. The learning algorithm will compute the difference between the output 
generated by the neural network yi and the desired target vector zi, which will represent the error signal: 
  Nizye iii ,,2,1, …=−=  (5) 
The signal error is used to adapt the synaptic weight wji using a gradient descendent strategy [10]: 

  
ji

jiji w
Eww

∂
∂

η+=    (6) 

where η ∈ (0,1) is the learning rate, controlling the descent slope on the error surface which is 
corresponding to the learning error function El: 

  ( )∑
=

−=
N

i
iil zyE

1

2

2
1

 (7) 

A set TQ ⊂  of samples which haven’t been used in the training phase will be used to measure the 

ability of the neural network to generalize. The error gE will represent the generalization error: 

  ( )2
,2

1 ∑
∈

−=
Qzy

g zyE  (8) 

 
 
 

2. Neural Networks versus Approximation Theory 

 
The approximation theory deals with the problem of approximating or interpolating a continuous, 
multivariate function f : Rn → Rm by an approximating function FW having a fixed number of 
parameters W = (w1, w2, ..., wp) ∈ Rp. For a choice of a specific approximating function F, we want to 
find the set W of parameters that provides the best possible approximation of f on the set of examples. 
 
From this point of view, the approximation of a function is equivalent with the learning problem for a 
neural network.  
 
In this paper we want to show the capabilities of a neural network to approximate arbitrary continuous 
functions. In the same time we will analyze the "best approximation property" of the neural networks 
and build a practical neural network to approximate continuous functions. 

2.1. Neural Networks are Universal Approximators 

 
The questions which arise is whether MLP neural networks are in fact inherently limited to 
approximate only some special class of functions or they are universal approximators. This approach 
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prompts a natural problem that has to be solved if we want to construct a multilayer feed forward 
neural network [13]. Given a function  f,  is it possible to approximate this given f function with a given 
ε precision? 
 
In the literature we can find many important results concerning the capability of the neural networks to 
be universal approximators [4], [9], [11], [14], [17], [19], [21]. 
 
The approximation problem can be formulated formally as: 
if mn RRXf →⊆:  is a continuous function, d is an Euclidean distance, and mn

W RRF →:  is an 
approximation function that depends continuously on W∈ P, determine the parameters W*, such that: 
 [ ] [ ] ( ) PWxfxFdxfxFd WW ∈∀≤∗ ,)(),()(),(   (9) 
A solution to this problem, if it exists, is said to be a best approximation. Typical results deal with the 
possibility, given a network, of approximating any continuous function arbitrarily well. In 
mathematical terms this means that the set of functions that can be computed by the network is dense. 
We can built neural networks such the corresponding set of approximating function is dense in C[R]. 
We will consider the following general neural network: 

• an input layer with n input neurons; 
• a hidden layer with N hidden neurons and the activation functions Hi; 
• an output layer having only one output neuron 2  with the identity function 1x(x) = x as 

activation function; 
• the input neurons are connected to the hidden neurons by the weights Wi∈Rn; 
• the hidden neurons are connected to the output neuron by the weight ki ∈R; 

 
The class of approximating functions corresponding to it is: 

  [ ] ( ) [ ] N}∈∈⊆⋅=∈= ∑
=

N,,,;)({
1

UCHRUWxHkxfUCf n
N

i
iiiF  (10) 

The Stone-Weierstrass [2] theorem can be used to show that certain network architectures possess the 
universal approximation capability. 
 
Theorem (Stone-Weierstrass): Let domain U be a compact space of n dimensions, and let F be a set of 
continuous real-valued functions on U, satisfying the following criteria: 
 (C1) Identity Function: The constant function f(x) = 1 is in F;  
 (C2) Separability: For any two points x1 ≠ x2 in U, there is a function f ∈ F such that  f(x1) ≠ f(x2);  
 (C3) Algebraic closure: if f,g ∈ F, then fg, af+bg ∈ F (∀) a,b∈R; Then F is dense in C[U], the set of 
continuous functions on U.  
In other words, (∀) ε > 0 and (∀) g ∈ C[U] (∃) f ∈ F such that |g(x) - f(x)| < ε. 

2.2. Neural Networks and the Best Approximation Theory 

 
We can give an informal formulation of the approximation problem: given a function f ∈ F, and A ⊆ F, 
find the element a ∈ A that is the "closest" to f. 
 
In order to give a mathematical meaning to the approximation problem, we will introduce some 
definitions [8]: 
 
Definition 1: Given f ∈ F and A ⊆ F, we call the distance of f from A as  ( ) afAfd

Aa
−=

∈
inf,  

Definition 2: If there exist af
Aa

−
∈

inf  and there exist a0 ∈ A such that ( )Afdaf ,0 =− , then a0 is 

said to be a best approximation to f from A.  
 
Definition 3: A set A is called an existence set if, to each f ∈ F there is at least one best approximation 
to f from A. 

                                                 
2 Because a mapping f: Rn → Rm can be computed by m mappings fi: Rn → R, i=1,2,...,m it is sufficient 
to focus on networks with one output neuron only. 
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Definition 4: A set A is called an uniqueness set if, to each f ∈ F there is at most one best 
approximation to f from A. 
 
Definition 5: A set A is called a Cebysev set3 if, to each f ∈ F there is one and exactly one best 
approximation to f from A. 
 
The precise formulation of the approximation problem is: given f ∈ F and A ⊆ F find a BA (Best 
Approximation) to f from A. 
 
Following the ideas presented in [8] we will show some simple properties of the existence sets, and to 
try to apply these results to network architectures. 
 
Proposition 1: Every existence set is closed. 
 
Proposition 2: Let A be a compact set in a metric space F. Then A is an existence set. 
 
We will try to apply these simple results to MLP neural networks. From the approximation theory point 
of view, a MLP neural network is a representation of a set A of parametric functions, and the learning 
algorithm corresponds to the search of the BA to some target function f from A. 
 
Since the approximating functions associated with MLP networks with one hidden layer does not have 
the BA property [8], it is natural to ask whether it is possible to build neural networks which posses this 
property. 
 
The answer is positive, and is based on the regularization theory [23], the connection between this 
theory and the neural networks being presented in [21]. 
 
Regularization techniques typically impose smoothness constraints on the approximating set of 
functions. It can be argued that some form of smoothness is necessary to allow meaningful 
generalization in approximation type problems. A similar argument can also be used in the case of 
classification where smoothness involves the classification boundaries rather than the input-output 
mapping itself.  
 
Our use of regularization, which follows the classical technique, introduced by Tikhonov [22], [23], 
identifies the approximating function as the minimum of a cost functional that includes an error term 

( )2
2
1∑ −

i
ii yz and a smoothness functional [ ]fΦ

2
1 , usually called a stabilizer.  

 
In the Bayesian interpretation [6] of regularization the stabilizer corresponds to a smoothness prior, and 
the error term to a model of the noise in the data (usually Gaussian and additive).  
 
Suppose that the training set ( ){ }NizxT ii ,,2,1, …==  has been obtained by random sampling of a 
function f, belonging to some space of functions X defined on Rn, in the presence of noise, and suppose 
we are interested in recovering the function f, or an estimate of it, from the set of data T. This problem 
is clearly ill-posed [18], since it has an infinite number of solutions. In order to choose one particular 
solution we need to have some a priori knowledge of the function that has to be reconstructed. The 
most common form of a priori knowledge consists in assuming that the function is smooth, in the sense 
that two similar inputs correspond to two similar outputs.  
 
The main idea underlying regularization theory is that the solution of an ill-posed problem can be 
obtained from a variational principle [22], which contains both the data and prior smoothness 
information. Smoothness is taken into account by defining smoothness in such a way that lower values 
of the functional correspond to smoother functions.  
 

                                                 
3 A Cebysev set is a existence set and a uniqueness set. 
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Since we look for a function that is simultaneously close to the data and also smooth, it is natural to 
choose as a solution of the approximation problem the function that minimizes the following functional 
[5]:  

  [ ] ( ) [ ]∑ Φλ+−=
i

ii fzyfH
2
1

2
1 2  (11) 

where λ is a positive number that is usually called the regularization parameter. The first term is 
enforcing closeness to the data, and the second smoothness, while the regularization parameter controls 
the trade off between these two terms. It can be shown that, for a wide class of functionals, the 
solutions of the minimization of the functional (11) all have the same form [9].  
 
We first need to give a more precise definition of what we mean by smoothness and define a class of 
suitable smoothness functional. We refer to smoothness as a measure of the oscillatory behavior of a 
function. Therefore, within a class of differentiable functions, one function will be said to be smoother 
than another one if it oscillates less. If we look at the functions in the frequency domain, we may say 
that a function is smoother than another one if it has less energy at high frequency (smaller bandwidth) 
[10].  
 
First high-pass filtering the function, and then measuring the power, that is the L2 norm, of the result, 
can measure the high frequency content of a function. In formulas, this suggests defining smoothness 
functional of the form:  

  [ ]
( )
( )∫=Φ nR s

s
s

G

f
df ~

~ 2

  (12) 

where ~ indicates the Fourier transform, 
G~
1  is some positive function that falls to zero as  ||s|| → ∞ (so 

that 
G~
1  is an high-pass filter) and for which the class of functions such that this expression is well 

defined is not empty [20]. 

Depending the choice we make with the function G, the regularization term [ ]fΦ
2
1 can have or not a 

void null space. Therefore we can define an equivalence relation on the set of functions which are 
different relative to an element of the null space of the regularization term. The function that minimizes 
the functional (11) has the following form [21]:   
 ( ) ( ) ( )xxxx pGwf

i
ii += ∑ ;  (13) 

where p(x) is a term belonging to the null space of the regularization term [ ]fΦ
2
1 . 

We make the following notation: { }k
1=ααμ  is a base of the k-dimensional null space of the 

regularization term [ ]fΦ
2
1 , and dα real constants, we have the following general solution: 

  ( ) ( ) ( )∑∑
=α

αα
=

μ+=
kN

i
ii dGwf

11
; xxxx  (14) 

In practical application we can consider classes of stabilizers with void null space. Therefore, without 
reducing the generality of the solution of the minimization of functional (11), we can consider the 
following practical solution [6], [21]: 
  ( ) ( )∑=

i
iiGwf xxx ;  (15) 

The solution (15) of the variational problem (11) has a simple interpretation in terms of a MLP neural 
network with one hidden layer [5]. Let’s analyze the architecture of the neural network that 
corresponds to the solution function (15): 
 
The architecture of the neural network corresponds to a neural network of the MLP type with one 
hidden layer: 
• The input layer contains n input neurons, n representing the dimensionality of the input space 

( ) ( ) ( )( )n
iiii xxx ,,, 21 …=x  ∈ Rn.  
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• The hidden layer having a number of hidden neurons equal to the dimension of the training set 
( )( ){ }NifT ii ,,2,1, …== xx . The activation functions of the hidden neurons are the Green 

functions ( )kG xx −  [4]. The dimension of the hidden layer can be reduced using an unsupervised 
clustering algorithm [6]; 
• The output layer contains one single output layer having as activation function a linear function or 
a special weighted functions of the output values generated by the neurons in the hidden layer [1]; 

Synaptic weights: 
• The weights between the input layer and the hidden layer are included in the form of the activation 
functions of the hidden neurons. These weights are not explicitly presented in the mathematical 
equation (15);  
• The vector ( )Nwww ,,,w 21 …=  represents the weights between the hidden layer and the output 
layer. 

 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 

Figure 1: Architecture of a neural network that corresponds to the solution function (15). 
 
In some particular cases, the unknown parameters which correspond to the weight vector w, can be 
calculated using a straight forward computation [10]: 
 ( ) zλIGw 1−+=  (16)
   
In practice, the computation (15) is unrealistic due to the requirement that the matrix ( ) 1−+ λIG should 
exist and because of the high computational complexity of the necessary calculations. For this reason, 
to avoid this high computational complexity, a dimensional reduction should be performed, with the 
goal to reduce the numbers of neurons in the hidden layer [6]. After this dimensional reduction, the 
weight vector w can be computed using a supervised learning strategy of Back Propagation type 
(gradient descendent) [12]. 

In the particular case of RBF (Radial Basis Function), we have ( )
2

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

σ

−
−

=− i

i xx

i exxG , and the 
solution of the approximation problem is then a linear superposition of radial Green's functions 
"centered" on the data points [16].  
 
The approximated solution belongs to the following subset of C[U]:  

  [ ] ( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∈=∈=Ω ∑
=

RkxxGkxfUCf i
N

i
ii ,;)(

1
 (17) 

Our intention is to prove that the set Ω has the BA property [8]. For this we will need to state the 
following property: 
 
Proposition 3: The set Ω is an existence set. 

+ yi  = f(xi)

w1

w2 

wk 

wN

G(x-

G(x-

G(x-

G(x-

( )xi
1  

( )xi
2  
( )xi
3  

( )xi
k  

( )xi
n  

   1 
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In this way we are able to build a neural network which posses the BA property. We will have a neural 
network with an architecture like the one is presented in Figure 1, taking as activation functions for the 
neurons in the hidden layer Hi = G(x;xi), i = 1, 2, ..., N. 
 
 

3. Network Structure and Learning 
 
From the practical perspective the above solution is not feasible, because when the number of data 
points becomes large; the complexity of the network may become too high, being proportional to the 
number of data points. 
 
So we will apply the following strategy: 

- we will consider an approximation of the function ∑
=

=
N

i
ii xxGkxf

1
);()( , with the Gaussian radial 

basis function:                       ∑
=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

σ

−
−

=
K

i

xm

i
i

i

ekxf
1

*

2

)(  (18) 

where:  K << N ; 
     - mi is the mean value of the data inputs xi in a local neighborhood and is often referred to as the i-th 
centre or mean; These mi values can be imagined to be centers of n-dimensional balls of radius σi that 
define regions of influence. 
 - σi is the receptive field width associated with the i-th region. 
 
The learning algorithm for determining the parameters of the approximator f* is accomplished in two 
steps: 
 
Step1: K-means clustering algorithm [6] is used to cluster the input data and thereby determine the 
centers mi for the hidden neurons. The objective in the clustering phase is to locate K centers 
(corresponding to K hidden neurons). Once the centers are determined, the widths σi are set using the 
nearest-neighbor heuristic: σi is set to the Euclidean distance from mi to mj , where mj is the centre 
closest to mi (and distinct). 
 
Step2: the weights ki are trained using gradient descendent [10]. 
 
In this scheme the BA property is preserved while the computational complexity has been reduced with 
respect to the exact solution of the regularization problem. 
 
 

4. Simulations and experiments 
        
In order to study the properties of the RBF networks obtained as a theoretical result, we have 
implemented this type of neural network and we have studied the learning capabilities and the 
generalization capabilities.  
 
We have taken in consideration as target function, to be approximated, the following function: 

 ( )xx
x

xF sin20100
01.0

1)( 2 ++
+

=   (19) 
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Figure 2: Simulation of the learning process: training set with 50 examples, target function (19), 5.000 

epochs. Results El = 0.8400046229, Eg = 0.02456050552. 
 

Figure 3: Simulation of the learning process: training set with 50 examples, target function (19), 15.000 
epochs. Results El = 0.244744266319, Eg = 0.006297215819. 
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Figure 4: Simulation of the learning process: training set with 50 examples, target function (19), 25.000 
epochs. Results El = 0.1574727744, Eg = 0.004022683017. 

 
Some of the simulations regarding the learning capabilities of the RBF neural network, which is 
equivalent with the process of approximating the function (19), using as examples 50 points uniform 
distributed on the [0,1] interval. 
 

Nr. of epochs El Learning error Eg Generalization error Activation function 
5000 0.8400046229 0.02456050552 Gaussian 
10000 0.38664092 0.010000231 - 
15000 0.244744266319 0.006297215819 - 
25000 0.1574727744 0.004022683017 - 
5000 1.219456601 0.1661223741 multi-quadratic inverse 

function 
10000 1.200011187 0.1680013331 - 
15000 1.119925620 0.1565290011 - 
25000 0.956610098 0.1112432100 - 
5000 2.745756980 0.3488366621 multi-quadratic function 
10000 2.001883509 0.2761120911 - 
15000 1.870343121 0.1135634901 - 
25000 1.100087623 0.9999234376 - 
 

Table1: Results of the simulations, describing number of epochs, El and Eg and the 
activation function. 
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